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Regularisation by (Brownian) noise

Addition of noise has positive effects on the theory of the equation (in a pathwise sense)

—  ODEs:

t
Xi=ux +/ b(Xs)ds + W,
0

Many results: Veretennikov, Davie, Krylov-Rockner, Flandoli, Attanasio, Fedrizzi, Proske,
Aryasova—Pilipenko,... Essentially bounded b. More precisely, Ladyzhenskaya-Prodi-Serrin
(LPS) condition :

be LILY g+2<1.
P q

—  Transport (or continuity) equation (Stratonovich integral):
dwu(t, z) + b(x) - Vu(t,z)dt = Vu(t,z) odWy

good theory for L°° solutions and preservation of regularity. Flandoli—G.—Priola, Flandoli—
Attanasio, Flandoli—-Maurelli, Neves—Olivera.

—  Flandoli-Beck—G.—Maurelli: full LPS condition (<1), new promising method of proof.



(More) Regularisation by (Brownian) noise

Stochastic vector advection equation (Flandoli-Maurelli-Neklyudov):

d
d:B + curl(v x B)dt + O’Z curl(eg, x B) odW/F =0.
k=1

Noise avoid blow-up of || B(t, )|z for v € C* with o€ (0, 1).

Non-linear PDEs with transport structure. Point vortices in 2d (Flandoli-G.—Priola),
Vlasov—Poisson (Delarue—Flandoli-Vincenzi).

N
du(t,z) +u(t,z) - Vu(t,z)= Z or(x) - Vu(t, ) o dWE.
k=1

(Hypoelliptic) Noise helps to avoid collapse due to peculiar configurations.

Modulated non-linear Schrédinger equation in d = 1. De Bouard—Debussche, Debussche—
Tsutsumi.

dio(t, ) =iAp(t,x) o dWy +i|p(t, )P ~2p(t, x)dt

Motivated by homogeneisation in optical wave—guides with dispersion management.

Averaging lemmas for kinetic equations. (Fedrizzi-Flandoli-Priola-Vovelle, Lions-
Perthame-Souganidis, Gess—Souganidis)



Deterministic regularisation by noise

Goal: provide a deterministic framework to discuss regularization by “perturbations/modula-
tion” for the following model PDEs:

e Transport equation: z € R%, t >0, w: R — RY b: RY— R?
Opu(t, x) +we- Vu(t,z)+b(z) - Vu(t,z) =0, u(0, -) = uo.
e Non-linear Schrodinger equation: x €T R, t >0, w:R— 1R
Opp(t, ) =1A@(t, x)wy +i|p(t, )P~ 2p(t, z).
e Korteweg—de Vries equation: x € T, R, t >0, w: R — R
Owu(t, z) = Ou(t, x ) + Ox(u(t, 2))2.

> By defining a suitable notion of "irregular" w we are able to show, in a quantitative way,
that the more w is irregular the more some properties of these equations improves.

> The sample paths of Brownian motion or fractional Brownian motion and similar processes
have almost surely this kind of irregularity.

[Joint work with Remi Catellier and Khalil Chouk]



A model problem

Consider the linear transport PDE
Owu(t, x) + we- Vu(t,z) = f(x), u(0,-)=0.

Solutions are given explicitly by
t
u(t, ) :/ flrx+ws —wy)ds =T f(x —wy)
0
where for any continuous function w: [0, 1] — R we define the averaging operator
t
Tef@) = [ atw)ds,  T=TRf T
0

acting on functions (or distributions) f: R?— IR.
Question: What is the relation between w, the regularity of f and that of w(t,-)?

If w is smooth we do not expect anything special to happen and u to have the same regularity

of f.



The averaging operator

> d=1, w;=t. Then if F'(x)= f(x) we have T;"f fo "(x+s)ds=F(x+t)— F(x)
and T'": L°° — Lip:

T2 f () =T ()l < | f lloo]z — 9

~

T ()] < [ flloolt — 5]

> Tao—Wright: if w “wiggles enough” then T3 maps L? into L9 with ¢’ > g.

> Davie: if w is a sample of BM then a.s. (the exceptional set depends on f)

T f (@) = T f () < Cuwll flloolz — y ||t = s[1/27

Problem: study the mapping properties of T with w sample path of a stochastic process.



Irregular functions

Consider

then T3 f = F Y(Y*F(f)). Mapping properties of T in (H*),cRr spaces can be discussed
in terms of Y":

T2 e = | (1 + €22V (O FF(O) g
In our setting more convenient to look at the scale (FL%), :

1/ lrze = / F(O1(1+ €2)2/2de

since FL® C C'*.

We say that w is (p, v)—irregular if there exists a constant
K such that for all ¢ € R? and 0 <s<t<1:

V(I < K(L+ €))7t — s]7.



Where we find irregularity?

> In d =1 smooth functions are (p, ) irregular for p + v = 1. In particular if we insist on
v>1/2 we have p<1/2.

> Not easy to say if a function is irregular.

QLI The fBM of Hurst index H is p—irregular for any p <1/2H.

= there exists functions of arbitrarily high irregularity and arbitrarily L°°-near any given
continuous function.

WG ER An irregular function cannot be too regular.

Proof. If w e CY with af +~>1 and o € [0, 1], using the Young integral, we find

t
yt—sy:yew(t—s)y:/ pia—iaw,q Y (q)

SOKy ([t =s[7+ [t —s[*"]a|*)[w]o(1 +|a]) 7 —0

if t>s and a < p. This implies that is not possible that 6 > (1 — )/ p.



Facts about irregularity

> For d > 1 smooth functions are not irregular: if |t — s| < 1

t t
/ ez'(a,wr)drg/ €i<a,wé>(t—s)d7ag(1+Ka,wgm—l%(l%—!a])—p.

> If w is p—irregular and ¢ is a C'! perturbation then w + ¢ is at least p — (1 — ) irregular
since:

t

t
nz’u;@(g):/ €i<£,wr+gor>d7a:/ ei<£,wr>dryssz(€)

S

and we can use Young integral estimates.

> If W is a fBM and ® an adapted smooth perturbation then W + ® is as irregular as W/
(via Girsanov theorem).

> Other results (see Catellier thesis): relation with intersection local times, irregularity for a-
stable Levy processes, relation with local non-determinism.



Irregularity, what for?

LIl /f w is p—irregular then
TV:. H5— H5t°P
and
TV: FL& — FLYTP.
Proof. Indeed

\ T f | ppeso = / A€ (1+ €)Y ()(FF)(E)]

<Kwrt—sw/ A€ (14 [€)°|(FP) ()] = Kt — 5| F ]l 710

XEGETLY More difficult to understand the mapping properties in other spaces, for example
Holder spaces C'*. Only partial results available. Wide open problem.



Transport equation

> Consider the transport equation with a perturbation:
Opu(t, x) +we- Vu(t,z) +b(z) - Vu(t,z) =0, u(0, ) = up.
> In the Lipshitz case there is only one solution u given by the method of characteristics:
u(t, z) =uo(¢y ()
where ¢:(x) =z, is the flow of the ODE

{ iy = b(xy) + iy

To—X

> Uniqueness of solutions is related to the uniqueness (and smothness) theory of the flow.



ODEs and the averaging operator

In order to exploit the averaging properties of w in the study of the ODE

t
T =T+ / b(xs)ds + wy
0

we rewrite it in order to make the action of the averaging operator explicit: let 0, = x; — wy:

t t
0, = Oy + / b(ws + 0,)ds = Oy + / (d,G) (0)
0 0
where G(x) =T"b(z) so that d;Gs(x) = f(ws+ x).

If we assume that G is C'7 in time (> 1/2) with values in a space of regular enough functions
we can study this equation as a Young type equation for 6 € C7.

> Non-linear Young integral:

t
|| @GO =1m > Gura 0

This limit exists if 6 € C,' and G € C/CY with (14 ) > 1. The integral is in C}'.



Young equations

The integral equation

0= 00+ /0 (4G (0))

is well defined for 6 € C7 and G € C/CY 1, with (1+v)y > 1.
e Existence of global solutions if GG of linear growth.
e Uniqueness if G € C]C%1... and differentiable flow.

x,loc

e Smooth flow if G e CJCYTF.

The equation

'
Ty =0+ / b(xs)ds + wy
0

has a unique solution for w p—irregular and b € FL™ for « > 1 — p. In this case we can take
0 € C' above and the condition for uniqueness (and Lipshitz flow) is G € C?Ci/Q.



Distributional vectorfields

> Say that z is controlled by w if 6 =2 —w & C7. In this case we have

L= | " b(s)ds = / (dT)(0,)

and the r.h.s. is well defined as soon as T"b € C,'CY.

> If wis p irregular and b€ FL then T*bc C)FLE " so if a+ p =1 we have T"b e C]CY.

In this case I,.(b) can be extended by continuity to all b€ FL® and in particular we have given

a meaning to
t
/ b(zs)ds
0

when b is a distribution provided x is controlled by a p-irregular path.

> For controlled paths the ODE
t
T =10+ / b(xs)ds + wy
0

make sense even for certain distributions b as a Young equation for =z — w.



Transport equations driven by irregular paths

(work of R. Catellier)

We want to give a meaning and study the uniqueness problem for the transport equation
(¢ +b(x) -V +w-V)u(t,z) =0

for u e L and w € C7 with ¢ >1/3 such that (w, W) is a geometric o-Holder rough path
such that w is p-irregular. For the moment only in the case div b =0.

> Weak formulation: We consider u as a distribution: u:(¢) = [ dazp(x) u(t, z) for all
¢ € LY(IRY). The integral formulation of the equation is

)~ ule)= [ (V- (bg))dr + / Cur (V)

for all o € S(RY) and 0 < s <.

We need to give a meaning to such an integral equation in order to discuss the regularization
by noise phenomenon. (No way out!)

> Possible via the theory of controlled rough paths (G. 2004).



Integration of controlled paths

Let (X, X) be a o-Holder rough path with o >1/3:
X, =Xt Xus + (X = Xo) @ (X = Xo), | Xe = X | +1X,0| 2= O(Jt — 5]%)
> We say that y € C¢ is controlled by X if there exists y* € CY such that
Y —ys — v (Xo— Xo) =19k , = O(|t — 5]*7).

> For a controlled path y we can define the integral against X by compensated Riemman
sums:

t
R X
It — /0 ySdXs . _hg[n ; yti(Xt'H—l - Xti) =+ Yt Xti+17ti

> This integral is the only function (up to constants) which has the following property
I — I = yo(Xy — X2) + y XX, o+ O(|t — 5.

In particular, the integral is itself controlled by X and ¥ =y.



Rough solutions to the transport equation

BN We say that u is a function controlled by w if for all o € S(R?) we have

us(p) — us(p) = u¥ () (ws — ws) +uf ()

where u’(yp) € C? and \ufs(go)\ <|t —s|?%.

Y

IS0 /f « is controlled we say that it is a L°° solution of the rough transport equation
(RTE) if

(o) = uslp)= [ (V- (bip))dr + / " ur(Ve)dyw,

holds for all p € S(RY), 0 < s<t.

Remark: If 0 >1 /2 we can just assume that u,(V¢) € C{ so that the rough integral becomes
a Young integral.

Equivalently, u is a solution to the RTE iff

ut(p) —us(p) = /t ur(V - (bp))dr +us(Vp) (we — ws) + US(VQSD)Wt,S +O(Jt — 3’30)



Regularisation for RTE

If b is Lipshitz there exists a solution to the RTE given by u(t,x) = uo(¢; *(x)).

LLECIGIN Let b € FLY for o >0 and o+ p > 3 /2 and let w be p-irregular. Then there
exists a unique solution to the RTE given by the method of characteristics.

Proof. Approximate b by b., then by the previous Lemma there exists a unique solution .
to the RTE. Analysis of the approximate flow ¢. shows that this solution converges to a
controlled solution u of the RTE with vectorfield b. Since ¢ is Lipschitz we can prove again
uniqueness. [

NI @ The above result is path-wise. In particular b can depend on w.

NNE @ If b€ C% b deterministic and w is a fBm of Hurst index H then the uniqueness

holds almost surely when o >1—1/(2H) and « > 0. This recovers the results of Flandoli-
Gubinelli—-Priola for the Brownian case but extend them well beyond the Brownian context.



Dispersive equations modulated by irregular signals

(joint work with K. Chouk)
Two simple dispersive models with p-irregular modulation w:

e Non-linear Schédinger equation: z € T, R, IR?, ¢t >0
Opo(t, x) =iAp(t, x)0pws +i|p(t, z)|P~2p(t, 1).
e Korteweg—de Vries equation: xt € T, R, t >0
Owu(t, ) = 03u(t, x)Ow; + Op(u(t, x))2.

To be compared to the non-modulated setting where 0;w; = 1 and studied in the scale of
(H?®)s spaces.

The equations are understood in the mild formulation
t
u(t) = Uu(0) + / U(U2) =10, (u(s))2ds.
0

with U = e?9z_ (similarly for NLS). Here w can be an arbitrary continuous function.



Young formulation of KAV

Rewrite the mild formulation as (U}" :eaiwt)

o(0) = (UF) ) =u()+ [ (U109, (Uu(s))2ds.

Theorem QEE:

Xi(p) = Xi(, ) —/Ot (US)~10.(Usp)ds

If w is p irregular then X € C'7 Lipjoc(H®) for > —p and p >3 /4.

For v € C7TH® we can give a meaning to the non-linearity as a Young integral
t t
| U o Ure)Ps = [ (@X)0(s): =lim S Xi (v(t) = X (0(t)
The continuity of the Young integral implies that if v,, —v in CYH® then

[ e ouupeeas=tm [ ) to.wrens)as
0 n Jo



Young equation and well-posedness

The Young equation forve C7TH® :
t
o)) =u(0)+ | ([dX)(()

has local solutions for initial conditions in H® with locally Lipshitz flow. Uniqueness in
CYH<.

> Equivalent “differential” formulation:

v(t) = v(s) = Xes(v(s)) + O(It = s[*7),  v(0)=uo

Regularization by modulation. In the non-modulated case it is known that there cannot
be a continous flow for a<—1/2on T and a < —3/4 on RR.

> Global solutions thanks to the L? conservation and smoothing for oz > 0 or an adaptation
of the I-method for —3/2<a <0 and a>—p/(3 —27).

> NLS: 1d, global solutions for « >0 and p >1/2. 2d, local solutions for a>1/2.

> Global solutions for 1d NLS with o > 0 come from a smoothing effect of the non—linearity
which is due to the irregularity of the driving function.



Strichartz estimates

A different line of attack to the modulated Schrédinger equation comes from the application

of the following Strichartz type estimate which can be proved under the same p-irregularity
assumption.

LetT >0, pe(2,5],p>min (% — %, 1) then there exists a finite constant C'y, 7> 0

and v*(p) > 0 such that the following inequality holds:

for all v € L'([0,T], L%(R)).

/' US(U2) gy d s

0

< Co TP Y| L1011, 22®R))
LP([0,T], L27(R))

> In the deterministic case the Strichartz estimate does not have the factor of 7" in the
critical case p=>5. This is a sign of a mild regularization effect of the noise.

REIGETIE Similar path—wise statements (in w) holds true for averaging lemmas in kinetic

equations with irregular perturbations (similar to the results of Lions—Perthame-Souganidis
in the Brownian case).



Application of Strichartz estimates

As an application we obtain global well-posedness for the modulated NLS equation with
generic power nonlinearity i e: N'(¢) =|¢|* ¢: (Debussche—de Bouard, Debussche—Tsutsumi)

Let pe(1,4], p=p+1, p>min(1,3/2 — %) and 1’ € L?(R) then there exists
T* >0 and a unique u € LP([0,T], L?P(R)) such that the following equality holds:

t
"y — Ug““u0+i/ U2(U%) =1 (|ug 1) d s
0

for all t € [0,T™*]. Moreover we have that || u;||r2®)= || uol||r2(r) and then we have a global
unique solution u € LY, ([0, +0o0), L?P(R)) and u € C ([0, +00), L*(R)). If u® € HY(R) then

loc

u e C([0,00), H(R)).



Thanks.



