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Regularisation by (Brownian) noise

Addition of noise has positive e�ects on the theory of the equation (in a pathwise sense)

! ODEs:

Xt= x+

Z
0

t

b(Xs)ds+Wt

Many results: Veretennikov, Davie, Krylov-Röckner, Flandoli, Attanasio, Fedrizzi, Proske,
Aryasova�Pilipenko,... Essentially bounded b. More precisely, Ladyzhenskaya-Prodi-Serrin
(LPS) condition :

b2Lt
qLx

p d

p
+ 2
q
< 1:

! Transport (or continuity) equation (Stratonovich integral):

dtu(t; x)+ b(x) � ru(t; x)dt=ru(t; x) �dWt

good theory for L1 solutions and preservation of regularity. Flandoli�G.�Priola, Flandoli�
Attanasio, Flandoli�Maurelli, Neves�Olivera.

! Flandoli�Beck�G.�Maurelli: full LPS condition (61), new promising method of proof.



(More) Regularisation by (Brownian) noise

! Stochastic vector advection equation (Flandoli�Maurelli�Neklyudov):

dtB+ curl(v�B)dt+�
X
k=1

d

curl(ek�B) �dWt
k=0:

Noise avoid blow-up of kB(t; �)kLx1 for v 2C� with �2 (0; 1).

! Non-linear PDEs with transport structure. Point vortices in 2d (Flandoli�G.�Priola),
Vlasov�Poisson (Delarue�Flandoli�Vincenzi).

du(t; x)+u(t; x) � ru(t; x)=
X
k=1

N

�k(x) � ru(t; x) �dWt
k:

(Hypoelliptic) Noise helps to avoid collapse due to peculiar con�gurations.

! Modulated non-linear Schrödinger equation in d=1. De Bouard�Debussche, Debussche�
Tsutsumi.

dt'(t; x)= i�'(t; x) �dWt+ ij'(t; x)jp¡2'(t; x)dt

Motivated by homogeneisation in optical wave�guides with dispersion management.

! Averaging lemmas for kinetic equations. (Fedrizzi-Flandoli-Priola-Vovelle, Lions-
Perthame-Souganidis, Gess�Souganidis)



Deterministic regularisation by noise

Goal: provide a deterministic framework to discuss regularization by �perturbations/modula-
tion� for the following model PDEs:

� Transport equation: x2Rd, t> 0, w:R!Rd, b:Rd!Rd

@tu(t; x)+w_ t � ru(t; x)+ b(x) � ru(t; x)= 0; u(0; �)=u0:

� Non-linear Schrödinger equation: x2T;R, t> 0, w:R!R

@t'(t; x)= i�'(t; x)w_ t+ ij'(t; x)jp¡2'(t; x):

� Korteweg�de Vries equation: x2T;R, t> 0, w:R!R

@tu(t; x)= @x3u(t; x)w_ t+ @x(u(t; x))2:

B By de�ning a suitable notion of "irregular" w we are able to show, in a quantitative way,
that the more w is irregular the more some properties of these equations improves.

B The sample paths of Brownian motion or fractional Brownian motion and similar processes
have almost surely this kind of irregularity.

[Joint work with Remi Catellier and Khalil Chouk]



A model problem

Consider the linear transport PDE

@tu(t; x)+w_ t � ru(t; x)= f(x); u(0; �)= 0:

Solutions are given explicitly by

u(t; x)=
Z
0

t

f(x+ws¡wt)ds=Ttwf(x¡wt)

where for any continuous function w: [0; 1]!Rd we de�ne the averaging operator

Tt
wf(x)=

Z
0

t

f(x+ws)ds; Tt;s
w f =Ttwf ¡Tswf

acting on functions (or distributions) f :Rd!R.

Question: What is the relation between w, the regularity of f and that of u(t; �)?

If w is smooth we do not expect anything special to happen and u to have the same regularity
of f .



The averaging operator

B d=1, wt= t. Then if F 0(x)= f(x) we have Ttwf(x)=
R
0

t
F 0(x+ s)ds=F (x+ t)¡F (x)

and Tw:L1!Lip:

jTtwf(x)¡Ttwf(y)j6 kf k1jx¡ y j; jTt;sw f(x)j6 kf k1jt¡ sj

B Tao�Wright: if w �wiggles enough� then Ttw maps Lq into Lq
0
with q 0> q.

B Davie: if w is a sample of BM then a.s. (the exceptional set depends on f)

jTt;sw f(x)¡Tt;sw f(y)j6Cwkf k1jx¡ y j1¡jt¡ sj1/2¡

Problem: study the mapping properties of Tw with w sample path of a stochastic process.



Irregular functions

Consider

Yt
w(�)=

Z
0

t

eih�;wsids

then Ttwf =F¡1(YtwF(f)). Mapping properties of Tw in (Hs)s2R spaces can be discussed
in terms of Y w:

kTt;sw f kHs=


(1+ �2)s/2Yt;sw (�)Ff(�)




H�
s:

In our setting more convenient to look at the scale (FL�)� :

kf kFL�=
Z
jf(�)j(1+ �2)�/2d�

since FL��C�.

De�nition 1 (Catellier�G.) We say that w is (�; 
)�irregular if there exists a constant
K such that for all � 2Rd and 06 s6 t6 1:

jYt;sw (�)j6K(1+ j� j)¡�jt¡ sj
:



Where we find irregularity?

B In d= 1 smooth functions are (�; 
) irregular for �+ 
 = 1. In particular if we insist on

 > 1/2 we have �< 1/2.

B Not easy to say if a function is irregular.

Theorem The fBM of Hurst index H is ��irregular for any �< 1/2H.

) there exists functions of arbitrarily high irregularity and arbitrarily L1-near any given
continuous function.

Lemma An irregular function cannot be too regular.

Proof. If w 2C� with ��+ 
 > 1 and �2 [0; 1], using the Young integral, we �nd

jt¡ sj= jeia(t¡ s)j=

������
Z
s

t

eia¡iawr||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
C��

drYrw(a)||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}
C


������
6CKw (jt¡ sj
+ jt¡ sj��+
 jaj�)kwk�(1+ jaj)¡�! 0

if t > s and �< �. This implies that is not possible that � > (1¡ 
)/�.



Facts about irregularity

B For d> 1 smooth functions are not irregular: if jt¡ sj� 1Z
s

t

eiha;wridr'
Z
s

t

eiha;ws
0i(t¡s)dr' (1+ jha; ws0 ij)¡1.(1+ jaj)¡�:

B If w is ��irregular and ' is a C1 perturbation then w+ ' is at least �¡ (1¡ 
) irregular
since:

Yt;s
w+'(�)=

Z
s

t

eih�;wr+'ridr=
Z
s

t

eih�;'ridrYs;rw (�)

and we can use Young integral estimates.

B If W is a fBM and � an adapted smooth perturbation then W +� is as irregular as W
(via Girsanov theorem).

B Other results (see Catellier thesis): relation with intersection local times, irregularity for �-
stable Levy processes, relation with local non-determinism.



Irregularity, what for?

Theorem If w is ��irregular then

Tw:Hs!Hs+�

and

Tw:FL�!FL�+�:

Proof. Indeed

kTt;sw f kFL�+�=
Z

d� (1+ j� j)�+�jYt;sw (�)(Ff)(�)j

6Kwjt¡ sj

Z

d� (1+ j� j)�j(Ff)(�)j=Kwjt¡ sj
kf kFL�:

Remark More di�cult to understand the mapping properties in other spaces, for example
Hölder spaces C�. Only partial results available. Wide open problem.



Transport equation

B Consider the transport equation with a perturbation:

@tu(t; x)+w_ t � ru(t; x)+ b(x) � ru(t; x)= 0; u(0; �)=u0:

B In the Lipshitz case there is only one solution u given by the method of characteristics:

u(t; x)=u0(�t
¡1(x))

where �t(x)=xt is the �ow of the ODE�
x_ t= b(xt)+w_ t
x0=x

B Uniqueness of solutions is related to the uniqueness (and smothness) theory of the �ow.



ODEs and the averaging operator

In order to exploit the averaging properties of w in the study of the ODE

xt=x0+
Z
0

t

b(xs)ds+wt

we rewrite it in order to make the action of the averaging operator explicit: let �t=xt¡wt:

�t= �0+
Z
0

t

b(ws+ �s)ds= �0+
Z
0

t

(dsGs)(�s)

where Gs(x)=Tswb(x) so that dsGs(x)= f(ws+x).

If we assume thatG is C
 in time (
>1/2) with values in a space of regular enough functions
we can study this equation as a Young type equation for � 2C
.

B Non-linear Young integral:Z
0

t

(dsGs)(�s)= lim
�

X
i

Gti+1;ti(�ti)

This limit exists if � 2Ct

 and G2Ct


Cx
� with 
(1+ �)> 1. The integral is in Ct


.



Young equations

Theorem The integral equation

�t= �0+
Z
0

t

(dsGs)(�s)

is well de�ned for � 2C
 and G2Ct

Cx;loc

� with (1+ �)
 > 1.

� Existence of global solutions if G of linear growth.

� Uniqueness if G2Ct

Cx;loc

�+1 and di�erentiable �ow.

� Smooth �ow if G2Ct

Cx

�+k.

Theorem The equation

xt=x0+
Z
0

t

b(xs)ds+wt

has a unique solution for w ��irregular and b2FL� for �> 1¡ �. In this case we can take
� 2C1 above and the condition for uniqueness (and Lipshitz �ow) is G2Ct


Cx
3/2.



Distributional vectorfields

B Say that x is controlled by w if �=x¡w 2C
. In this case we have

Ix(b)=
Z
0

t

b(xs)ds=
Z
0

t

(dsTswb)(�s)

and the r.h.s. is well de�ned as soon as Twb2Ct

Cx

�.

B If w is � irregular and b2FL� then Twb2Ct

FLx

�+� so if �+ �>� we have Twb2Ct

Cx

�.

In this case Ix(b) can be extended by continuity to all b2FL� and in particular we have given
a meaning to Z

0

t

b(xs)ds

when b is a distribution provided x is controlled by a �-irregular path.

B For controlled paths the ODE

xt=x0+
Z
0

t

b(xs)ds+wt

make sense even for certain distributions b as a Young equation for �=x¡w.



Transport equations driven by irregular paths

(work of R. Catellier)

We want to give a meaning and study the uniqueness problem for the transport equation

(@t+ b(x) � r+w_ t � r)u(t; x)= 0

for u2L1 and w 2C� with � > 1/3 such that (w;W) is a geometric �-Hölder rough path
such that w is �-irregular. For the moment only in the case div b=0.

B Weak formulation: We consider u as a distribution: ut(') =
R

dx'(x) u(t; x) for all
'2L1(Rd). The integral formulation of the equation is

ut(')¡us(')=
Z
s

t

ur(r � (b'))dr+
Z
s

t

ur(r')drwr

for all '2S(Rd) and 06 s6 t.

We need to give a meaning to such an integral equation in order to discuss the regularization
by noise phenomenon. (No way out!)

B Possible via the theory of controlled rough paths (G. 2004).



Integration of controlled paths

Let (X;X) be a �-Hölder rough path with � > 1/3:

Xt;s=Xt;u+Xu;s+(Xt¡Xu)
 (Xu¡Xs); jXt¡Xsj+ jXs;tj1/2=O(jt¡ sj�)

B We say that y 2Ct� is controlled by X if there exists yX 2Ct� such that

yt¡ ys¡ ysX(Xt¡Xs)=: ys;t
] =O(jt¡ sj2�):

B For a controlled path y we can de�ne the integral against X by compensated Riemman
sums:

It=
Z
0

t

ysdXs : =lim
�

X
i

yti(Xti+1¡Xti)+ yti
XXti+1;ti

B This integral is the only function (up to constants) which has the following property

It¡ Is= ys(Xt¡Xs)+ ys
XXt;s+O(jt¡ sj3�):

In particular, the integral is itself controlled by X and IX= y.



Rough solutions to the transport equation

De�nition We say that u is a function controlled by w if for all '2S(Rd) we have

ut(')¡us(')=usw(')(wt¡ws)+ut;s
] (')

where u�
w(')2C� and jut;s

] (')j. jt¡ sj2�.

De�nition If u is controlled we say that it is a L1 solution of the rough transport equation
(RTE) if

ut(')¡us(')=
Z
s

t

ur(r � (b'))dr+
Z
s

t

ur(r')drwr

holds for all '2S(Rd), 06 s6 t.

Remark: If �>1/2 we can just assume that ut(r')2Ct� so that the rough integral becomes
a Young integral.

Equivalently, u is a solution to the RTE i�

ut(')¡us(')=
Z
s

t

ur(r � (b'))dr+us(r')(wt¡ws)+us(r2')Wt;s+O(jt¡ sj3�)



Regularisation for RTE

Lemma If b is Lipshitz there exists a solution to the RTE given by u(t; x)=u0(�t
¡1(x)).

Theorem Let b 2 FL� for � > 0 and � + � > 3/2 and let w be �-irregular. Then there
exists a unique solution to the RTE given by the method of characteristics.

Proof. Approximate b by b", then by the previous Lemma there exists a unique solution u"
to the RTE. Analysis of the approximate �ow �" shows that this solution converges to a
controlled solution u of the RTE with vector�eld b. Since � is Lipschitz we can prove again
uniqueness. �

Remark The above result is path-wise. In particular b can depend on w.

Remark If b 2C�, b deterministic and w is a fBm of Hurst index H then the uniqueness
holds almost surely when �> 1¡ 1/(2H) and �>0. This recovers the results of Flandoli�
Gubinelli�Priola for the Brownian case but extend them well beyond the Brownian context.



Dispersive equations modulated by irregular signals

(joint work with K. Chouk)

Two simple dispersive models with �-irregular modulation w:

� Non-linear Schödinger equation: x2T;R;R2, t> 0

@t'(t; x)= i�'(t; x)@twt+ ij'(t; x)jp¡2'(t; x):

� Korteweg�de Vries equation: x2T;R, t> 0

@tu(t; x)= @x3u(t; x)@twt+ @x(u(t; x))2:

To be compared to the non-modulated setting where @twt = 1 and studied in the scale of
(Hs)s spaces.

The equations are understood in the mild formulation

u(t)=Utwu(0)+
Z
0

t

Ut
w(Usw)¡1@x(u(s))2ds:

with Utw= eiwt@x
3
. (similarly for NLS). Here w can be an arbitrary continuous function.



Young formulation of KdV

Rewrite the mild formulation as (Utw= e@x
3wt)

v(t)= (Utw)¡1u(t)=u(0)+
Z
0

t

(Usw)¡1@x(Uswv(s))2ds:

Theorem Let

Xt(')=Xt('; ')=
Z
0

t

(Usw)¡1@x(Usw')2ds

If w is � irregular then X 2C
 Liploc(H�) for �>¡� and �> 3/4.

For v 2C
H� we can give a meaning to the non�linearity as a Young integral

Z
0

t

(Us
w)¡1@x(Us

wv(s))2ds :=

Z
0

t

(dsXs)(v(s)): =lim
�

X
i

Xti+1(v(ti))¡Xti(v(ti))

The continuity of the Young integral implies that if vn! v in C
H� then

Z
0

t

(Us
w)¡1@x(Us

wv(s))2ds= lim
n

Z
0

t

(Us
w)¡1@x(Us

wvn(s))
2ds



Young equation and well-posedness

Theorem The Young equation for v 2C
H� :

v(t)=u(0)+
Z
0

t

(dsXs)(v(s))

has local solutions for initial conditions in H� with locally Lipshitz �ow. Uniqueness in
C
H�.

B Equivalent �di�erential� formulation:

v(t)¡ v(s)=Xt;s(v(s))+O(jt¡ sj2
); v(0)=u0

Regularization by modulation. In the non-modulated case it is known that there cannot
be a continous �ow for �6¡1/2 on T and �6¡3/4 on R.

B Global solutions thanks to the L2 conservation and smoothing for �> 0 or an adaptation
of the I-method for ¡3/26�< 0 and �>¡�/(3¡ 2
).

B NLS: 1d, global solutions for �> 0 and �> 1/2. 2d, local solutions for �> 1/2.

B Global solutions for 1d NLS with �> 0 come from a smoothing e�ect of the non�linearity
which is due to the irregularity of the driving function.



Strichartz estimates

A di�erent line of attack to the modulated Schrödinger equation comes from the application
of the following Strichartz type estimate which can be proved under the same �-irregularity
assumption.

Theorem Let T >0, p2 (2;5],�>min (3
2
¡ 2

p
;1) then there exists a �nite constant Cw;T >0

and 
?(p)> 0 such that the following inequality holds:��������Z
0

:

U:
w(Usw)¡1  s d s

��������
Lp([0;T ];L2p(R))

�CwT 

?(p)jj  jjL1([0;T ];L2(R))

for all  2L1([0; T ]; L2(R)).

B In the deterministic case the Strichartz estimate does not have the factor of T in the
critical case p=5. This is a sign of a mild regularization e�ect of the noise.

Remark Similar path�wise statements (in w) holds true for averaging lemmas in kinetic
equations with irregular perturbations (similar to the results of Lions�Perthame�Souganidis
in the Brownian case).



Application of Strichartz estimates

As an application we obtain global well-posedness for the modulated NLS equation with
generic power nonlinearity i e:N (�)= j�j��: (Debussche�de Bouard, Debussche�Tsutsumi)

Theorem Let �2 (1; 4], p= �+1, �>min (1; 3/2¡ 2

p
) and u02L2(R) then there exists

T ?> 0 and a unique u2Lp([0; T ]; L2p(R)) such that the following equality holds:

ut=Utwu0+ i
Z
0

t

Ut
w(Usw)¡1 (jusj�us) d s

for all t2 [0; T ?]. Moreover we have that jj utjjL2(R)= jj u0jjL2(R) and then we have a global
unique solution u2Lloc

p ([0;+1); L2p(R)) and u2C([0;+1); L2(R)). If u02H1(R) then
u2C([0;1); H1(R)).



Thanks.


