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> |to & Doeblin introduced a variety of analysis adapted to the sample paths of a sto-
chastic process, following Levy's pionnering work on independent increment processes.

> Consider a family of kernels (P,):so on R? satisfying Chapman-Kolmogorov equation

Prs(x,dY) = [ Po(x,d2)Py(z, dy)

which defines a probability P on C(Rso, RY): the law of a continuous Markov process.

>Sample paths have a “tangent” process. Ito identified it as a particular Lévy process:
the Brownian motion (W;);.

> Stochastic calculus: from the local picture to the global structure via stochastic dif-
ferential equation (SDE)

dXt = a(Xt)d Wt + b(Xt)dt



>These are the basic building blocks of stochastic analysis

>The SDE describe rigorously the Gaussian small-time asymptotics of the diffusion:

(%D yxrbgs__dY o o

Ps:(x, d e ,
5t(X Y) ZX(6t)d/2

> Like in analysis, the fact that we can consider infinitesimal changes simplify the anal-
sysi and make appear universal objects:

- polynomials - calculus, Taylor expansion
- Brownian motion and its functionals - Ito calculus, stochastic Taylor expansion



> Eucliddean quantum fields (EQFs) are particular class of probability measures on
F'(RY):

[ . C@VE)=3 [, 0lp)e g,

S@)= [ 21700 |2 +5m?] 9(x) |+ plp()dx

for some non-linear function p:R - R;(, e.g. a polynomial bounded below, exponen-
tials, trig funcs.

Introduced in the '70-'80 as a tool to constructs models of (bosonic) quantum field theories in the sense of
Wightman via the reconstruction theorem of Osterwalder-Schrader.

A very ill-defined representation:

- Large scale problems: the integral in S() extends over all the space, sample paths
not expected to decay at infinity in any way.

- Small scale problems: sample paths are not expected to be function, but only dis-
tributions, the quantity p(p(x)) does not make sense.
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Does a stochastic analysis of EQFs exists?
- Can we describe EQFs “locally” in term of “simpler” EQFs?
- ... and then connect the “local” and “global” pictures?




Diffusion process

Euclidean quantum field

Pt(Xr dy)
Pt+S(Xr dy) = fPS(XtdZ)Pt(Zt dy)

(y-x-b(x)5t)a(x)”1(y-x-b(x)6t)

Ps«(x,dy)=~e 2ot i

Z,(6t)9/2!

t

(Wo):
dXt = a(Xt)d Wt + b(Xt)dt

v(dy)
1 _
?ff:(Rd) O(p)e S((p)d‘P

(local description)?

(change parameter)?
(basic block)?

(local-to-global link)?



The basic problem to solve is to identify:
- a change parameter along which consider “change” (time for diffusions)

- a suitable building block for the infinitesimal changes (Brownian motion for diffu-
sion)

Many different (but roughly equivalent) ways to solve this identification problem:

- Parabolic stochastic quantisation. the parameter is an additional “fictious” coor-
dinate t¢[R, playing the role of a simulation time. The EQF is viewed as the invariant
measure of a Markov process (SDE). Building block is a space-time white noise.

[Parisi/Wu, Nelson, Jona-Lasinio/Mitter, Albeverio/Rockner, Da Prato/Debbusche, Hairer, Mourrat/Weber, G./Hofmanova, many others...]

- Elliptic stochastic quantisation. the parameter is a coordinate z¢R°. Building block

is a white noise in R%"2. An elliptic stochastic partial differential equation describes
the EQF as a function of the white noise. Link with supersymmetry. (rarisi/sourlas,
Klein/Landau/Perez, Albeverio/De Vecchi/G.]

- the variational method.

I've reported at SPA 2018 about recent progresses in understanding this “new” stochastic analysis. | will
describe more in detail the variational method today.



The variational method
[Barashkov—-Gubinelli, Duke J. 2020]

- change parameter: the scale t< [R5, of spatial variation of the sample paths.

- basic block: the scale-by-scale decomposition of the Gaussian free field, i.e. a cen-
tred Gaussian random field ¢ with covariance

E[p()p(y)]=(m*-0)"(x-y)= | x-y | 22,

- local-to-global link: a stochastic optimal control problem or alternatively an co-dim
Hamilton-Jacobi-Bellmann equation for the associated value function.

The HJB equation realises the continuous renormalization group a la Wilson and
Wegner. [Wilson, Wegner, Polchinski, Salmhofer, Brydges/Kennedy, Mitter, Gawedzki/Kupiainen, Brydges/Bauerschmidt/Slade, Bauer-

schmidt/Bodineau, also many others...]

See also recent work of Bauerschmidt/Bodineau and Bauerschmidt/Hofstetter on HJB
for sine-Gordon.



The basic building block: “Brownian motion” (W;):g

e'"*¢(dk)

~ . md
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with € a white noise in RY.
Gaussian Free Field

() PN e *Wdg

Lp,(md)oap)v(dw e i

So0)= [ | 70(x) |2 +9m? | p(x) | dx.

E [e‘f/\P(WT(X))dxo(Woo)]
La,( d)O((P)V(d(P) = lmdrller?o [E[e_pr(WT(X))dX]

A - oo infinite volume limit, T oo small scales limit



Stochastic control representation for general functional of a Brownian motion

Boué-Dupuis (BD) formula

. 1 (e
~log [E[eAWn)*F(WA)] = |nf[E[V,\(WT+ZT) -F(W.+Z.)+ 5f0 | us| fz(md)ds]
u

) f e *{iy(R)

St 200% | (TR 2 my2 R = U (), (U)o adapted to (We)eso

V(W)= | p(W(x))dx

In the r.h.s. we have a stochastic process (W;+Z;)so controlled by u with a quadratic
running cost.



Note that

[e0)
sup | Zel7< | sl Bmads.
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Summing up:

ef((p)V(d‘P)" lim  [Wh1(f)- Wh:(0)]

S (RY) AMRY T oo

-log
| 170
Wp1(f) = |Df[E[V/\(WT+ZT) ~ f(Weo + Zo) +§_[0 | us| Lz([Rd)dS]

> Existence and uniqueness of the limits T~ o and AT R is reduced to a good under-
standing of a stochastic variational problem.

Let us discuss first the T - o limit for fixed A (which we take to be a torus T9).



The ®; EQF
Take d=2 and p(€)=p(§) =&*+ar&? + br. By choosing ar, by appropriately we have

Vi (Wr+2)= | {IWi]+ 4lwlze + 6lwilzs+ 3ws 23 + 24}

where [WX] are Wick products and martingales in T.
By direct estimation one has

wrlzs| +

Urdzf[[w%]]zT ; fvd3WTZ%

1
<) ~| [ z+gsupl 2]
t

From which

Wi+ 27+ 5 [ us | gods>- QWD+ (1-6)] [_zt+5 [ " lusl b gads | >-QqwiD



> Now for all k20 and p21and k<0 we have
SUD[E"[[WT]]"BK (1) S
where B.Xo(T?) are the Holder-Besov spaces of the torus T°.

All the Wick products [Wf] converge in .#" as distributions of small negative regularity.
> Lower bound.

) 1
InfE| V(W +27)+5 | s | gy | 2 -EQUWD > -eo.

> Upper bound. On the other hand

InfE[Va(Wr27) + [ s | s | < ETVA (W) | < EQ/ (W) < oo,

>We have bounds uniform in T. Convergence is then (non-trivial) matter of choosing
the right spaces.



The ®3 EQF
>Take now d=3 always p(§) =

Things get trickier. We have now

1
sup E | Wrl gz-spay * ENWA N re) * og T B NIWAD oy | < -
(1) T " Tog T (1°)

Wick's monomials tends to be more irregular distributions. Analytic estimates get
worser, in particular no hope to control directly

[ Iz +

17
in terms of the L* and H' norms of Z.

> ldea: implement approximate minimizers to guess appropriate cancellations.



> Variational functional

additional renorm.
A

7~ ~\ 1 00
[ {1wite switze elwdlz « 3wnzi+ 2 Qi+ Wizr+ 23) o5 [ s Bgads

> Ito formula
T , .
|, [lwilzr 6lw?lzd) = | | [alw2]+ 12W21z:)2.ds + martingale
T .
=fo fw’s[‘*ﬂ"‘@ﬂ +12[W2]Z]usds + martingale

> (Stochastic) Euler-Lagrange equation (take care to obtain an adapted solution!)

Js[4IWS] + 12IW2]Zs] + us+ =0



> Approximate minimizer allow to introduce a new variational parameter [:
us = ~Js[4lWe] + 12[Ws]Zs] + -+ = = Js[4IWs ] + 12[Ws] > Z6] + s
where we use the paraproduct decomposition
[Welzs =[we] > Zs + [We < Z

in order to isolate the most irregular part in this product.
In [W2]>Z the factor Z; behaves in estimates like a constant.

> Then

Kt
—

T T T
Zr= [ Jausds=- | RLAWE)+ 12[We]> Ze]ds+ | Jolsds



> Renormalized form of the variational problem

Substituting the reparametrized control into the functional we get:
‘l e}
| {11 iz« olwRIz 3w 23 28} + 5 [ lusl Bgeds
‘l 0
“W(zr k) + [ Z8e o T Egads
where now (provided cy is appropriately chosen)
| W(Zr,Kr) | €6 it | g d
nlT) 180 A5, sl 2(r)dS

allowing to get uniform bounds as in the d=2 case.

> The T - co limit is then obtained via '-convergence of this variational representa-
tion. (after 30+ pages fighting for some compactness...)



Wrap up (so far)

The variational approach introduces a nice stochastic analysis of some EQFs:
- change parameter : a scale parameter t<¢Rs;

- basic building block: the scale-by-scale decomposition (I/});s of the Gaussian free
field:

kst
0= 0 T e miy %

- local description: approximate minimizer via stochastic Euler-Lagrange equation:

Us= _15[4[[W53]] + TZHWSZ]]ZS] F e

- local-to-global link: renormalized variational problem.




Small scales behaviour

The local description is precise enough to obtain interesting results like the singularity
of the ®3 measure v on the torus T° with respect to the Gaussian free field (GFF) p.

The reason is that under v the scale-by-scale canonical field X;=W;+Z; behaves like
(recall the EL equations)

.
Xe= W Ze=We- | RLAIWE])+ 12[W2)> Ze]ds -+
and this allows to show that a quantity like

1= |_ixil

has different almost sure behaviour as T - o under v and under the GFF measure .

[Barashkov/G. See also Hairer.]



The semiclassical limit is about letting 7> 0 in

) = =2
| g0 @V (@0)=55] | O(@)e " do.

- Physically it corresponds to the limit where quantum fluctuations become negli-
gible.

- Probabilistically it leads to a Laplace principle where W = #"?W (small noise limit).

The variational formulation for ®3 5 on T gives readily that the family (v"),, satisfies
a large deviation principle with the classical action as rate function

_ BAY 1 2+l 2 2, 4
nlogv(A)=inf [ 5190001 *+5m’ [9(0 1+ | 90| “x.

[Barashkov/G. See also previous work by Jona-Lasinio/Mitter]



Infinite volume limit
is far less understood. Let's discuss ®3. [sarashkov/c. in progress]

>Small scale limit can be taken right away if we want by letting t<[0,1] and

E[W(x)Ws(x)]=(m*-0)"(x-y)(trs),  t,5¢[0,1].

> The functional (ignoring the source term with f) is now

120

~

177 t i
| {11 iz 6lwiz: «3wizi+ 2t} o5 [ NushEigeds,  2e= [ (m?- )" 2usgs

> Note that W;¢B:X([-L, L] but

| Wi | Bk oo([-L,L]%) = log”z(L), L - oo,



Euler-Lagrange equations

[E,,(f[sz'(m +Z) Ky + 4 f W+ 22+ f; flez's(m2 - 1) sts> =0, VK. (1)

A strange (new) Rind of stochastic elliptic equation (in weak form).

> One can still get apriori estimates. Take weight p(x)=(1+ | x|) ™ and K= pZ,

€| [ Wz pzieaf oo 21202304 p21 | | 2o -) p2scs | <0

NV
coercive terms

> Some analysis then gives

B4 [ pzi+ [ [ 1m2-0)"2(p172,) | 2ds ) < B Q] < o

uniformly in A. This allows to take the limit in (1).



Description of the infinite volume measure?

—logf ,&Ov(d)= lim [F3(f) - HH(0)

AT RY

: 1 :
WH(F)=InfE[Va(Wh+20) - FWh+ 29) 5 [ (7= 0)"722, | By

17 .
=[E[V/\(W1 +Z1f)‘f(W1+Z1f)+§ . | (m?-0)"2Z]] fZ([RZ)dS]
> Still open.

Main obstacle : show that Z/-Z decays at large distance for local observables f = sta-
bility of the Euler-Lagrange equations.

This is a main open problem in all approaches to stochastic analysis of ®3




Outlook

Goal: understand the stochastic analysis of EQFs
(at least for superrenormalizable models)

- ldentify “building blocks” and describe EQFs (non-perturbatively) in terms of these
simpler objects.

- Small scales behaviour/renormalization: well understood in most models in some
of the approaches (see e.g. recent results of Hairer et al. on Yang-Mills fields).

- Coercivity (large fields problem) plays a key role for global control and infinite
volume limit. So far, not understood at all for YM.

- Variational description of the infinite volume limit? A possible replacement for DLR
approach or Dyson-Schwinger equations.

- A complete example of the program carried out to a large extent: Barashkov in his
thesis verifies OS axioms for Sine-Gordon within the variational approach: exis-
tence and uniqueness of infinite volume limit, control of the Laplace transform,
decay of correlations.

- Possible to use it for proving weak-universality (e.g. for ®3)



Open problems

- Infinite volume limit, stability of the EL equations.

- How to apply these ideas to gauge theories/geometric models? Higgs model, Yang-
Mills? Coercivity not well understood.

- Grassmann fields? Is there a replacement for the variational structure?
- Small coupling regime?

- Decay of correlations at high temperature?

- Use the approach for lattice unbounded spin systems?

- What about mass-less models on the lattice: Vo models?

Many of these problems are still open also for the other varieties of stochastic analysis



thanks



