

Lévy Lecture

CERTIFICATE

presented to

Massimiliano Gubinelli

for Stochastic Processes

Claudia Klüppelberg

President
Bernoulli Society for Mathematical Statistics and Probability

2020

Lévy lecture · World Congress in Probability and Statistics (WC2020) · Seul, July 20th 2021

A variational method for Euclidean quantum fields

▶ Ito & Dœblin introduced a variety of analysis adapted to the sample paths of a stochastic process, following Levy's pionnering work on independent increment processes.

 \triangleright Consider a family of kernels $(P_t)_{t\geq 0}$ on \mathbb{R}^d satisfying Chapman–Kolmogorov equation

 $P_{t+s}(x, dy) = \int P_s(x, dz) P_t(z, dy)$

$$P_{t+s}(x,dy) = \int P_s(x,dz)P_t(z,dy)$$

 \triangleright Sample paths have a "tangent" process. Ito identified it as a particular Lévy process: the Brownian motion $(W_t)_t$.

which defines a probability \mathbb{P} on $C(\mathbb{R}_{\geq 0}, \mathbb{R}^d)$: the law of a continuous Markov process.

▷ Stochastic calculus: from the local picture to the global structure via *stochastic dif- ferential equation* (SDE)

$$dX_t = a(X_t)dW_t + b(X_t)dt$$

▶ These are the basic building blocks of **stochastic analysis**

▶ The SDE describe rigorously the Gaussian small-time asymptotics of the diffusion:

$$P_{\delta t}(x, \mathrm{d}y) \approx e^{-\frac{1}{2\delta t}(y-x+b(x)\delta t)a(x)^{-1}(y-x+b(x)\delta t)} \frac{\mathrm{d}y}{Z_x(\delta t)^{d/2}}, \qquad \delta t \ll 1$$

- ▶ Like in analysis, the fact that we can consider infinitesimal changes simplify the analsysi and make appear universal objects:
 - polynomials → calculus, Taylor expansion
 - Brownian motion and its functionals \rightarrow Ito calculus, stochastic Taylor expansion

Euclidean quantum fields (EQFs) are particular class of probability measures on $\mathcal{S}'(\mathbb{R}^d)$:

$$\int_{\mathscr{S}'(\mathbb{R}^d)} O(\varphi) \nu(\mathrm{d}\varphi) = \frac{1}{Z} \int_{\mathscr{S}'(\mathbb{R}^d)} O(\varphi) e^{-S(\varphi)} \mathrm{d}\varphi,$$

$$S(\varphi) = \int_{\mathbb{R}^d} \frac{1}{2} |\nabla \varphi(x)|^2 + \frac{1}{2} m^2 |\varphi(x)|^2 + p(\varphi(x)) dx$$

for some non-linear function $p: \mathbb{R} \to \mathbb{R}_{\geq 0}$, e.g. a polynomial bounded below, exponentials, trig funcs.

Introduced in the '70-'80 as a tool to constructs models of (bosonic) quantum field theories in the sense of Wightman via the reconstruction theorem of Osterwalder–Schrader.

A very ill-defined representation:

- Large scale problems: the integral in $S(\varphi)$ extends over all the space, sample paths not expected to decay at infinity in any way.
- Small scale problems: sample paths are not expected to be function, but only distributions, the quantity $p(\varphi(x))$ does not make sense.

600 pages 535 pages

Does a **stochastic analysis of EQFs** exists? • Can we describe EQFs "locally" in term of "simpler" EQFs?

... and then connect the "local" and "global" pictures?

Diffusion process

Euclidean quantum field

$$P_{t}(x, dy)$$

$$P_{t+s}(x, dy) = \int P_{s}(x, dz) P_{t}(z, dy)$$

$$P_{\delta t}(x, dy) \approx e^{-\frac{(y-x-b(x)\delta t)a(x)^{-1}(y-x-b(x)\delta t)}{2\delta t}} \frac{dy}{Z_{x}(\delta t)^{d/2}},$$

$$v(\mathrm{d}y)$$

$$\frac{1}{Z} \int_{\mathscr{S}'(\mathbb{R}^d)} O(\varphi) e^{-S(\varphi)} \mathrm{d}\varphi$$

 $(W_t)_t$

 $dX_t = a(X_t)dW_t + b(X_t)dt$

The basic problem to solve is to identify:

- a **change parameter** along which consider "change" (time for diffusions)
- a suitable **building block** for the infinitesimal changes (*Brownian motion* for diffusion)

Many different (but roughly equivalent) ways to solve this identification problem:

• **Parabolic stochastic quantisation.** the parameter is an additional "fictious" coordinate $t \in \mathbb{R}$, playing the röle of a simulation time. The EQF is viewed as the invariant measure of a Markov process (SDE). Building block is a space-time white noise.

[Parisi/Wu, Nelson, Jona-Lasinio/Mitter, Albeverio/Röckner, Da Prato/Debbusche, Hairer, Mourrat/Weber, G./Hofmanova, many others...]

• Elliptic stochastic quantisation. the parameter is a coordinate $z \in \mathbb{R}^2$. Building block is a white noise in \mathbb{R}^{d+2} . An elliptic stochastic partial differential equation describes the EQF as a function of the white noise. Link with supersymmetry. [Parisi/Sourlas,

Klein/Landau/Perez, Albeverio/De Vecchi/G.]

the variational method.

I've reported at SPA 2018 about recent progresses in understanding this "new" stochastic analysis. I will describe more in detail the variational method today.

The variational method

[Barashkov-Gubinelli, Duke J. 2020]

- change parameter: the scale $t \in \mathbb{R}_{\geq 0}$ of spatial variation of the sample paths.
- basic block: the scale-by-scale decomposition of the Gaussian free field, i.e. a centred Gaussian random field φ with covariance

$$\mathbb{E}[\varphi(x)\varphi(y)] = (m^2 - \Delta)^{-1}(x - y) \approx |x - y|^{-(d-2)/2}.$$

• <u>local-to-global link</u>: a stochastic optimal control problem or alternatively an ∞-dim Hamilton-Jacobi-Bellmann equation for the associated value function.

The HJB equation realises the continuous renormalization group à la Wilson and Wegner. [Wilson, Wegner, Polchinski, Salmhofer, Brydges/Kennedy, Mitter, Gawedzki/Kupiainen, Brydges/Bauerschmidt/Slade, Bauerschmidt/Bodineau, also many others...]

See also recent work of Bauerschmidt/Bodineau and Bauerschmidt/Hofstetter on HJB for sine-Gordon.

The basic building block: "Brownian motion" $(W_t)_{t\geq 0}$

$$W_t(x) \approx \int_{|k| \le t} \frac{e^{ik \cdot x} \xi(dk)}{(|k|^2 + m^2)^{1/2}}, \quad x \in \mathbb{R}^d,$$

 $\int_{\mathcal{S}'(\mathbb{R}^d)} O(\varphi) \nu(\mathrm{d}\varphi) = \lim_{\Lambda \to \mathbb{R}^d} \lim_{T \to \infty} \frac{\mathbb{E}\left[e^{-J_{\Lambda}p(W_T(x))\mathrm{d}x}O(W_{\infty})\right]}{\mathbb{E}\left[e^{-J_{\Lambda}p(W_T(x))\mathrm{d}x}\right]}$

with ξ a white noise in \mathbb{R}^d .

$$\int_{\mathcal{S}'(\mathbb{R}^d)} O(\varphi) v(d\varphi) = \int_{\mathcal{S}'(\mathbb{R}^d)} O(\varphi) e^{-\int_{\mathbb{R}^d} p(W_T(x)) dx} \frac{e^{-S_0(\varphi)} d\varphi}{Z}$$

$$S_0(\varphi) = \int_{\mathbb{R}^d} \frac{1}{2} |\nabla \varphi(x)|^2 + \frac{1}{2} m^2 |\varphi(x)|^2 dx.$$

 $\wedge \to \infty$ infinite volume limit, $T \to \infty$ small scales limit

Stochastic control representation for general functional of a Brownian motion

Boué-Dupuis (BD) formula

$$-\log \mathbb{E}[e^{-V_{\Lambda}(W_{T})+F(W_{s})}] = \inf_{u} \mathbb{E}\left[V_{\Lambda}(W_{T}+Z_{T})-F(W_{s}+Z_{s})+\frac{1}{2}\int_{0}^{\infty}\|u_{s}\|_{L^{2}(\mathbb{R}^{d})}^{2}ds\right]$$

$$\frac{\partial}{\partial t} Z_t(x) \approx \int_{|k| \approx t} \frac{e^{iR \cdot x} \hat{u}_t(k)}{(|k|^2 + m^2)^{1/2}} dk = (J_t u_t)(x), \qquad (u_t)_{t \ge 0} \text{ adapted to } (W_t)_{t \ge 0}$$

$$V_{\Lambda}(W) = \int_{\Lambda} p(W(x)) dx$$

In the r.h.s. we have a stochastic process $(W_t + Z_t)_{t \ge 0}$ controlled by u with a quadratic running cost.

Note that

$$\sup_{t} \|Z_{t}\|_{H^{1}}^{2} \lesssim \int_{0}^{\infty} \|u_{s}\|_{L^{2}(\mathbb{R}^{d})}^{2} ds.$$

Summing up:

$$-\log \int_{\mathscr{S}'(\mathbb{R}^d)} e^{f(\varphi)} v(d\varphi) \approx \lim_{\Lambda \uparrow \mathbb{R}^d, T \to \infty} \left[\mathscr{W}_{\Lambda, T}(f) - \mathscr{W}_{\Lambda, T}(0) \right]$$

$$\mathscr{W}_{\Lambda, T}(f) = \inf_{u} \mathbb{E} \left[V_{\Lambda}(W_T + Z_T) - f(W_{\infty} + Z_{\infty}) + \frac{1}{2} \int_0^{\infty} \|u_s\|_{L^2(\mathbb{R}^d)}^2 ds \right]$$

 \triangleright Existence and uniqueness of the limits $T \to \infty$ and $\Lambda \uparrow \mathbb{R}^d$ is reduced to a good understanding of a stochastic variational problem.

Let us discuss first the $T \to \infty$ limit for fixed Λ (which we take to be a torus \mathbb{T}^d).

The Φ₂⁴ EQF

Take d=2 and $p(\xi)=p_T(\xi)=\xi^4+a_T\xi^2+b_T$. By choosing a_T,b_T appropriately we have

$$V_{\Lambda,T}(W_T + Z_T) = \int_{\mathbb{T}^d} \left\{ [W_T^4] + 4[W_T^3] Z_T + 6[W_T^2] Z_T^2 + 3W_T Z_T^3 + Z_T^4 \right\}$$

where $[W_T^k]$ are Wick products and martingales in T.

By direct estimation one has

$$\left| \int_{\mathbb{T}^d} 4[W_T^3] Z_T \right| + \left| \int_{\mathbb{T}^d} 6[W_T^2] Z_T^2 \right| + \left| \int_{\mathbb{T}^d} 3W_T Z_T^3 \right| \leq Q([W_T^k]) + \delta \left[\int_{\mathbb{T}^d} Z_T^4 + \frac{1}{2} \sup_t \|Z_t\|_{H^1}^2 \right]$$

From which

$$V_{\Lambda}(W_{T}+Z_{T})+\frac{1}{2}\int_{0}^{\infty}\|u_{s}\|_{L^{2}(\mathbb{R}^{d})}^{2}\mathrm{d}s\geq -Q([W_{T}^{k}])+(1-\delta)\left[\int_{\mathbb{T}^{d}}Z_{T}^{4}+\frac{1}{2}\int_{0}^{\infty}\|u_{s}\|_{L^{2}(\mathbb{R}^{d})}^{2}\mathrm{d}s\right]\geq -Q([W_{T}^{k}])$$

▶ Now for all $k \ge 0$ and $p \ge 1$ and $\kappa < 0$ we have

$$\sup_{T} \mathbb{E} \| [W_{T}^{k}] \|_{B_{\infty,\infty}^{-\kappa}(\mathbb{T}^{2})}^{p} < \infty$$

where $B_{\infty,\infty}^{-\kappa}(\mathbb{T}^2)$ are the Hölder-Besov spaces of the torus \mathbb{T}^2 .

All the Wick products $[W_T^k]$ converge in \mathcal{S}' as distributions of small negative regularity.

▶ <u>Lower bound</u>.

$$\inf_{U} \mathbb{E} \left[V_{\Lambda}(W_T + Z_T) + \frac{1}{2} \int_0^{\infty} \| u_s \|_{L^2(\mathbb{R}^d)}^2 ds \right] \ge -\mathbb{E} Q(\llbracket W_T^k \rrbracket) > -\infty.$$

▶ Upper bound. On the other hand

$$\inf_{U} \mathbb{E} \left[V_{\Lambda}(W_T + Z_T) + \frac{1}{2} \int_0^{\infty} \| u_s \|_{L^2(\mathbb{R}^d)}^2 ds \right] \leq \mathbb{E} \left[V_{\Lambda}(W_T) \right] \leq \mathbb{E} Q'(\llbracket W_T^k \rrbracket) < +\infty.$$

▶ We have bounds uniform in *T*. Convergence is then (non-trivial) matter of choosing the right spaces.

The Φ₃⁴ EQF

▷ Take now d=3 always $p(\xi)=\xi^4+\cdots$.

Things get trickier. We have now

$$\sup_{\tau} \left[\mathbb{E} \| W_{T} \|_{B^{-1/2-\kappa}_{\infty,\infty}(\mathbb{T}^{d})}^{p} + \mathbb{E} \| [W_{T}^{2}] \|_{B^{-1-\kappa}_{\infty,\infty}(\mathbb{T}^{d})}^{p} + \frac{1}{\log T} \mathbb{E} \| [W_{T}^{3}] \|_{B^{-3/2-\kappa}_{\infty,\infty}(\mathbb{T}^{d})}^{p} \right] < \infty.$$

Wick's monomials tends to be more irregular distributions. Analytic estimates get worser, in particular no hope to control directly

$$\left| \int_{\mathbb{T}^d} [W_T^3] Z_T \right| + \left| \int_{\mathbb{T}^d} [W_T^2] Z_T^2 \right|$$

in terms of the L^4 and H^1 norms of Z_T .

▶ **Idea:** implement approximate minimizers to guess appropriate cancellations.

Variational functional

$$\int_{\mathbb{T}^d} \left\{ [W_T^4] + 4[W_T^3] Z_T + 6[W_T^2] Z_T^2 + 3W_T Z_T^3 + Z_T^4 + \overbrace{c_T([W_T^2]] + W_T Z_T + Z_T^2)}^{\text{additional renorm.}} \right\} + \frac{1}{2} \int_0^\infty ||u_s||_{L^2(\mathbb{R}^d)}^2 ds$$

▶ Ito formula

$$\int_{\mathbb{T}^d} [4[W_T^3] Z_T + 6[W_T^2] Z_T^2] = \int_0^T \int_{\mathbb{T}^d} [4[W_S^3] + 12[W_S^2] Z_S] \dot{Z}_S dS + \text{martingale}$$

$$= \int_0^T \int_{\mathbb{T}^d} J_S [4[W_S^3] + 12[W_S^2] Z_S] u_S dS + \text{martingale}$$

▶ (Stochastic) Euler-Lagrange equation (take care to obtain an adapted solution!)

$$J_{s}[4[W_{s}^{3}] + 12[W_{s}^{2}]Z_{s}] + u_{s} + \cdots = 0$$

▶ Approximate minimizer allow to introduce a new variational parameter *l*:

$$u_S = -J_S[4[W_S^3] + 12[W_S^2]Z_S] + \cdots = -J_S[4[W_S^3] + 12[W_S^2] > Z_S] + l_S$$

where we use the paraproduct decomposition

$$[W_s^2]Z_s = [W_s^2] > Z_s + [W_s^2] \le Z_s$$

in order to isolate the most irregular part in this product.

In $[W_s^2] > Z_s$ the factor Z_s behaves in estimates like a constant.

▶ Then

$$Z_{T} = \int_{0}^{T} J_{s} u_{s} ds = -\int_{0}^{T} J_{s}^{2} [4[W_{s}^{3}] + 12[W_{s}^{2}] > Z_{s}] ds + \int_{0}^{T} J_{s} l_{s} ds$$

▶ Renormalized form of the variational problem

Substituting the reparametrized control into the functional we get:

$$\int_{\mathbb{T}^d} \left\{ [W_T^4] + 4[W_T^3] Z_T + 6[W_T^2] Z_T^2 + 3W_T Z_T^3 + Z_T^4 \right\} + \frac{1}{2} \int_0^\infty ||u_s||_{L^2(\mathbb{R}^d)}^2 ds$$

$$= \Psi(Z_T, K_T) + \int_{\mathbb{T}^d} Z_T^4 + \frac{1}{2} \int_0^\infty ||l_s||_{L^2(\mathbb{R}^d)}^2 ds$$

where now (provided c_T is appropriately chosen)

$$|\Psi(Z_T, K_T)| \le \delta \int_{\mathbb{T}^d} Z_T^4 + \frac{1}{2} \int_0^\infty ||l_s||_{L^2(\mathbb{R}^d)}^2 ds$$

allowing to get uniform bounds as in the d=2 case.

▶ The $T \to \infty$ limit is then obtained via Γ -convergence of this variational representation. (after 30+ pages fighting for some compactness...)

Wrap up (so far)

The variational approach introduces a nice stochastic analysis of some EQFs:

- change parameter : a scale parameter $t \in \mathbb{R}_{\geq 0}$;
- basic building block: the scale-by-scale decomposition $(W_t)_{t\geq 0}$ of the Gaussian free field:

$$W_T \approx \sum_{k} \frac{\mathbb{1}_{|k| \leq T}}{(|k|^2 + m^2)^{1/2}} g_k$$

• local description: approximate minimizer via stochastic Euler-Lagrange equation:

$$u_s = -J_s[4[W_s^3] + 12[W_s^2]Z_s] + \cdots$$

local-to-global link: renormalized variational problem.

Small scales behaviour

The local description is precise enough to obtain interesting results like the singularity of the Φ_3^4 measure ν on the torus \mathbb{T}^3 with respect to the Gaussian free field (GFF) μ .

The reason is that under v the scale-by-scale canonical field $X_t = W_t + Z_t$ behaves like (recall the EL equations)

$$X_t = W_t + Z_t = W_t - \int_0^T J_s^2 [4[W_s^3] + 12[W_s^2] > Z_s] ds + \cdots$$

and this allows to show that a quantity like

$$\int_{\mathbb{T}^d} \llbracket \boldsymbol{\varphi}^4 \rrbracket \approx \int_{\mathbb{T}^d} \llbracket X_T^4 \rrbracket$$

has different almost sure behaviour as $T \to \infty$ under ν and under the GFF measure μ .

[Barashkov/G. See also Hairer.]

The semiclassical limit is about letting $\hbar \to 0$ in

$$\int_{\mathscr{S}'(\mathbb{R}^d)} O(\varphi) v^{\hbar}(\mathrm{d}\varphi) = \frac{1}{Z^{\hbar}} \int_{\mathscr{S}'(\mathbb{R}^d)} O(\varphi) e^{-\frac{S(\varphi)}{\hbar}} \mathrm{d}\varphi.$$

- Physically it corresponds to the limit where quantum fluctuations become negligible.
- Probabilistically it leads to a Laplace principle where $W \to \hbar^{1/2} W$ (small noise limit).

The variational formulation for $\Phi_{2,3}^4$ on \mathbb{T}^d gives readily that the family $(v^\hbar)_{\hbar>0}$ satisfies a large deviation principle with the classical action as rate function

$$-\hbar \log v^{\hbar}(A) \approx \inf_{\phi \in A} \int_{\mathbb{T}^d} \frac{1}{2} |\nabla \varphi(x)|^2 + \frac{1}{2} m^2 |\varphi(x)|^2 + |\varphi(x)|^4 dx.$$

[Barashkov/G. See also previous work by Jona-Lasinio/Mitter]

Infinite volume limit

is far less understood. Let's discuss Φ_2^4 . [Barashkov/G. in progress]

▷ Small scale limit can be taken right away if we want by letting $t \in [0,1]$ and

$$\mathbb{E}[W_t(x)W_s(x)] = (m^2 - \Delta)^{-1}(x - y)(t \wedge s), \quad t, s \in [0, 1].$$

 \triangleright The functional (ignoring the source term with f) is now

$$\int_{\Lambda} \left\{ [W_1^4] + 4[W_1^3] Z_1 + 6[W_1^2] Z_1^2 + 3W_1 Z_1^3 + Z_1^4 \right\} + \frac{1}{2} \int_0^1 ||u_s||_{L^2(\mathbb{R}^2)}^2 ds, \qquad Z_t = \int_0^t (m^2 - \Delta)^{-1/2} u_s ds.$$

▷ Note that $W_1 \in B_{\infty,\infty}^{-\kappa}([-L,L]^d)$ but

$$\|W_1\|_{B^{-\kappa}_{\infty,\infty}([-L,L]^d)} \approx \log^{1/2}(L), L \to \infty.$$

Euler-Lagrange equations

$$\mathbb{E}_{\mu}\left(\int_{\mathbb{R}^{2}} f'(W_{1} + Z_{1}) K_{1} + 4 \int_{\Lambda} [[(W_{1} + Z_{1})^{3}]] K_{1} + \int_{0}^{1} \int_{\mathbb{R}^{2}} \dot{Z}_{s}(m^{2} - \Delta) \dot{K}_{s} ds\right) = 0, \quad \forall K.$$
 (1)

A strange (new) kind of stochastic elliptic equation (in weak form).

▶ One can still get apriori estimates. Take weight $\rho(x) = (1 + |x|)^{-\ell}$ and $K_s = \rho Z_s$

$$\mathbb{E}\left[\int_{\mathbb{R}^{2}} f'(W_{1} + Z_{1}) \rho Z_{1} + 4 \int_{\Lambda} \rho([(W_{1} + Z_{1})^{3}] - Z_{1}^{3}) Z_{1} + 4 \int_{\Lambda} \rho Z_{1}^{4} + \int_{0}^{1} \int_{\mathbb{R}^{2}} \dot{Z}_{s}(m^{2} - \Delta) \rho \dot{Z}_{s} ds\right] = 0$$
coercive terms

Some analysis then gives

$$\mathbb{E}_{\mu}\left(4\int_{\Lambda} \rho Z_{1}^{4} + \int_{0}^{1} \int_{\mathbb{R}^{2}} |(m^{2} - \Delta)^{1/2} (\rho^{1/2} \dot{Z}_{s})|^{2} ds\right) \lesssim \mathbb{E}_{\mu} Q([W_{1}^{k}]) < +\infty.$$

uniformly in Λ . This allows to take the limit in (1).

Description of the infinite volume measure?

$$-\log \int_{\mathcal{S}'(\mathbb{R}^d)} e^{f(\varphi)} v(d\varphi) \approx \lim_{\Lambda \uparrow \mathbb{R}^d} \left[\mathcal{W}_{\Lambda}(f) - \mathcal{W}_{\Lambda}(0) \right]$$

$$\mathcal{W}_{\Lambda}(f) = \inf_{Z} \mathbb{E} \left[V_{\Lambda}(W_1 + Z_1) - f(W_1 + Z_1) + \frac{1}{2} \int_0^1 \| (m^2 - \Delta)^{1/2} \dot{Z}_s \|_{L^2(\mathbb{R}^2)}^2 ds \right]$$

$$= \mathbb{E} \left[V_{\Lambda}(W_1 + Z_1^f) - f(W_1 + Z_1^f) + \frac{1}{2} \int_0^1 \| (m^2 - \Delta)^{1/2} \dot{Z}_s^f \|_{L^2(\mathbb{R}^2)}^2 ds \right]$$

Still open.

<u>Main obstacle</u>: show that $Z^f - Z$ decays at large distance for local observables $f \approx$ stability of the Euler-Lagrange equations.

This is a main open problem in all approaches to stochastic analysis of $\Phi_{2,3}^4$

Outlook

Goal: understand the stochastic analysis of EQFs (at least for superrenormalizable models)

- Identify "building blocks" and describe EQFs (non-perturbatively) in terms of these simpler objects.
- Small scales behaviour/renormalization: well understood in most models in some of the approaches (see e.g. recent results of Hairer et al. on Yang-Mills fields).
- Coercivity (large fields problem) plays a key role for global control and infinite volume limit. So far, not understood at all for YM.
- Variational description of the infinite volume limit? A possible replacement for DLR approach or Dyson–Schwinger equations.
- A complete example of the program carried out to a large extent: Barashkov in his thesis verifies OS axioms for Sine-Gordon within the variational approach: existence and uniqueness of infinite volume limit, control of the Laplace transform, decay of correlations.
- Possible to use it for proving weak-universality (e.g. for Φ_3^4)

Open problems

- · Infinite volume limit, stability of the EL equations.
- How to apply these ideas to gauge theories/geometric models? Higgs model, Yang-Mills? Coercivity not well understood.
- Grassmann fields? Is there a replacement for the variational structure?
- Small coupling regime?
- Decay of correlations at high temperature?
- Use the approach for lattice unbounded spin systems?
- What about mass-less models on the lattice: $\nabla \varphi$ models?
- •

Many of these problems are still open also for the other varieties of stochastic analysis

