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Part | - Euclidean QFTs & stochastic analysis




Euclidean Quantum Fields — for mathematicians

an EQFT is a prob. measure y on #'(R?) such that (Osterwalder-Schrader axioms)

1. Regularity: [|¢]l. is some norm on f’(Rd) and 9>0

2. Euclidean covariance: the Euclidean group G (rotations R + translations h)
ff,(Rd) F(o(R-+h))u(de) = L,),(M F(e)u(de)

3. Reflection positivity: Let 8(x1,...x;) = (—x1,%,...,x;) ERY, then

| F(09)F(@)n(de) >0




some early history

> construct rigorously QM models which are compatible with special relativity (finite
speed of signals and Poincaré covariance of Minkowski space R"*1).

> Quantum field theory (QM with co many degrees of freedom)

> Wightman axioms ('60-'70): Hilbert space, representation of the Poincaré group,
fields operators (to construct local observables)

> Constructive QFT program ('70-'80): hard to find models of such axioms. Examples
in R1*! were found in the '60. Glimm, Jaffe, Nelson, Segal, Guerra, Rosen, Simon,
and many others...

> Euclidean rotation - t — it = x( (imaginary time) - R"*! - R? . Minkowski — Euclidean

> Osterwalder-Schrader theorem : gives precise condition to perform the passage
to/from Euclidean space (OS axioms for Euclidean correlation function).

> high point of EQFT: construction of @3 (Euclidean version of a scalar field in R?*!
Minkowski space). (®3)x Glimm ('69). Glimm, Jaffe. Feldman ('74), Y.M.Park ('75)
(®3)grs Feldman, Osterwalder ('76). Magnen, Senéor ('76). Seiler, Simon ('76)

> other constructions of ®3. Benfatto, Cassandro, Gallavotti, Nicold, Olivieri, Presutti, Scacciatelli ('80) Brydges, Froh-

lich, Sokal ('83) Battle, Federbush ('83) Williamson ('87) Balaban ('83) Gawedzki, Kupiainen ('85) Watson ('89) Brydges, Dimock,
Hurd ('95)



Quantum
Physics

s Springer-Verlag
|| New York Heidelberg Berlin

535 pages 348 pages



‘ Gaussian free field

> GFF - simplest example of EQFT - Gaussian measure y on &' (RY) s.t.

zk(x Y) dk
[ omemnde) =6ty = [ 1 mmar= =87 -y),  xyeR!

and zero mean - m>0 is the mass - G(0) = +oo if d >2: not a function - distribution
of regularity

x<(2—d)/2

> can be used to construct a QFT but the theory is free: no interaction

variation - fractional Laplacian covariance s€ (0,1)

fcp(@cp(y)u(dcp):f& (a—A)"(x—y)p(da) = (m*+ (=A)") " (x—y)



+ interaction

can we construct a non-Gaussian EQFT? the heuristic idea is to try to maintain the
“Markovianity” of the GFF y - heuristically

o IV (9(0)dx

v(de) =——F——n(dg),

with A=A, UBA, and V:R — R so that

[ ve@)dr= [ Vie@)dx+ [ V((09)(x)dx
& RP holds

- F(0 efA+V(e(P(x))dxF efA+V(<P(x))dx
[ FogiF(oyv(dg) = [ T2 S h(dg) >0

unfortunately (even if we can make sense of it) will not be translation invariant - we
need A - R



‘ non-Gaussian Euclieand fields

@ go on a periodic lattice: R? - Z¢ | = (¢Z /2ntLN)“ with spacing ¢ >0 and side L
Se(@)

f F ( (P)e_;sdzxezg L|Ve<p(x)|2+mch (x)*+ Vs(Q(x);d(P
L Rzg,L ’

1
e, L _

| F(@)vH(dg) = 7.

e is an UV regularisation and L the IR regularisation

@ choose V, appropriately so that v&L - v to some limitas e =0 and L - . E.g. take
V. polynomial bounded below. d=2,3.

Ve(8) :)\(64_‘18@2)

The limit measure will depend on A >0 and on (4.). which has to be s.t. 4. > +o0 as
e - 0. Itis called the ®} measure

© study the possible limit points [the ®;] measure] - uniqueness? non-uniqueness?
correlations? description?



some models

> d=1 - time-reversal symmetric, translation invariant, Markov diffusions

> d=2 - various choices

21-1

Vi® =N+ Y apd, Vi(€) =awcos(BE)
k=0

Ve(€) =accosh(pE), V(&) =a.exp(BS)
> d=3 - “only” 4th order (6th order is critical)

> d =4 all the possible limits are Gaussian (see recent work of Aizenmann-Duminil
Copin, arXiv:1912.07973)



stochastic quantisation

Parisi-Wu ('81) introduce a stationary stochastic evolution associated with the EQF

9P (1 x) = _55(c1gg,x)) +n(tx), t20xeR’

with 1] space-time white noise

1 _
(D(t,x1)--D(t,x,)) szf'(w) o(t,x1)---@(t,x,)e@Pde, tER

transport interpretation: the map
Y~ P(t,) ~v

sends the Gaussian measure of the space-time white noise y to the EQF v




an (pre)history of stochastic quantisation (personal & partial)

|
>

1981 - Parisi/Wu - SQ (for gauge theories)

1985 - Jona-Lasinio/Mitter - “On the stochastic quantization of field theory” (rigorous SQ
for ®3 on bounded domain)

» 1988 - Damgaard/Hiffel - review book on SQ (theoretical physics)

» 1990 - Funaki - Control of correlations via SQ (smooth reversible dynamics)

» 1990-1994 - Kirillov - “Infinite-dimensional analysis and quantum theory as semimartingale

vV v v v Vv VY

calculus”, "On the reconstruction of measures from their logarithmic derivatives”, “Two
mathematical problems of canonical quantization.”

1993 - Ignatyuk/Malyshev/Sidoravichius - “Convergence of the Stochastic Quantization
Method 11" [Grassmann variables + cluster expansion]

2000 - Albeverio/Kondratiev/Rockner/Tsikalenko - “A Priori Estimates for Symmetrizing
Measures..."” [Gibbs measures via IbP formulas]

2003 - Da Prato/Debussche - “Strong solutions to the stochastic quantization equations”

2014 - Hairer — Regularity structures, local dynamics of ®4

2017 - Mourrat/Weber - coming down from infinity for ®3

2018 - Albeverio/Kusuoka - “The invariant measure and the flow associated to ®5..."
2021 - Hofmanova/G. — Global space-time solutions for ®3 and verification of axioms
2020-2021 - Chandra/Chevyrev/Hairer/Shen - SQ for Yang-Mills 2d/3d (local theory)



what is stochastic quantisation?




‘ analysis

T - S T s
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Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire; et vice versa (Newton)

[Given an equation involving any number of fluent quantities to find the fluxions, and vice versa]



diffusion processes

The word “random” comes from a French hunting term: “randon” designates
the erratic course of the deer which zigzags trying to escape the dogs. The
word also gave “randonnée” (hiking) in French.




Ito's idea

lto arrived to his calculus while trying to understand Feller's theory of diffusions an
evolution in the space of probability measures and he introduced stochastic differ-

ential equations to define a map (the It6 map) which send Wiener measure to the
law of a diffusion.

B, X

WV e

A\



stochastic analysis

[...] there now exists a reasonably well-defined amalgam of prob-
abilistic and analytic ideas and techniques that, at least among the
cognoscenti, are easily recognized as stochastic analysis. Nonetheless,
the term continues to defy a precise definition, and an understanding
of it is best acquired by way of examples.

(D. Stroock, “Elements of stochastic calculus and analysis ”, Springer,
2018)

Nowadays: Ito integral, Ito formula, stochastic differential equations, Girsanov's formula,
Doob's transform, stochastic flows, Tanaka formula, local times, Malliavin calculus, Skorokhod
integral, white noise analysis, martingale problems, rough path theory...
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analysis vs. stochastic analysis

Newton's calculus lto's calculus
planet orbit Sl Markov diffusion
(x,y) €O CR? global description Py (x,dy)
o (xx = x0)* + B(y —yo)* ="y Piis(x,dy) = [ Py(x,dz)Pi(z,dy)
t change parameter t
X(t+8t) ~x(t) +adt+0(8t) locsl description  Pay(x, dy) ~e Wb(xﬁt)ﬂ(iif_l(”b“)mﬁ

at+bt*+--- building block (Wi):

(x(8),5(t)) =F(x(t),y(£))  tocal/globallink dX;=a(X;)dW;+b(X;)dt

> other examples: rough paths, regularity structures, SLE, ...



stochastic quantisation as a stochastic analysis

Ito's calculus

Markov diffusion

Pt(xrdy)

Piys(x,dy) = [ Ps(x,dz)Pi(z,dy)

t
=t TGt g,
P@t(x/ dy) ~e 2o Z.(5t)1/?
(Wi):

dXt = a(Xt)th + b(Xt>dt

stoch. quantisation

EQF
) O(@)e™5@d
ZJ) 1 (rey O\ P ¢

dS OF
<F((P) ;qu)-l- 6((;P)>:O

object

global description

change parameter t

local description

(X (1)
dX =5[(A,—m?)X]+E

building block

local/global link

G (t+8t) ~adp () + POX(E) + -

9P =5[(Ae=m?)p—V'($)] +&



stochastic analysis of EQFs

» parabolic stochastic quantisation

3:0(t) = 5[ (A= m2)p(1) = V' (§(1))] +E()

[MG, M. Hofmanova - Global Solutions to Elliptic and Parabolic ®* Models in Euclidean Space - Comm. Math. Phys.
2019 | MG, M. Hofmanové - A PDE Construction of the Euclidean ®3 Quantum Field Theory - Comm. Math. Phys. 2021]

» canonical stochastic quantisation - singular stochastic wave equations

D0(1) + 3 (1) =T (B =) () = V' (§(1)) ]+ E(1)

[MG, H. Koch, T. Oh - Renormalization of the two-dimensional stochastic non- linear wave equations - Trans. Am. Math.
Soc. 2018 | MG, H. Koch, and T. Oh - Paracontrolled Approach to the Three-Dimensional Stochastic Nonlinear Wave
Equation with Quadratic Nonlinearity - Jour. Europ. Math. Soc. 2022]



» elliptic stochastic quantisation - supersymmetric proof

0 (z%) = o[ (A= mD)p(z,x) ~ V/(§(z,x)] +E(z%), zERExER!

[S. Albeverio, F. De Vecchi, MG - Elliptic Stochastic Quantization - Ann. Prob. 2020]
» variational method/FBSDE - stochastic control problem - I'-convergence
F@)-5@) g =i u uy 1
logfe do=infE| f(PL) + V(DPL) +§f0 |lug|ds
u

scale parameter t€ [0, oo] - CID,?‘:Xt+fOt]SuSds

[N. Barashkov, MG - A Variational Method for ®3 - Duke Math. Jour. 2020]



some papers

o

MG and M. Hofmanova. “A PDE Construction of the Euclidean ®3 Quantum
Field Theory.” Communications in Mathematical Physics 384 (1): 1-75 (2021).
https://doi.org/10.1007/s00220-021-04022-0.

S. Albeverio, F. C. De Vecchi, and MG, 'Elliptic Stochastic Quantization', Annals of Prob-
ability 48, no. 4 (July 2020): 1693-1741, https://doi.org/10.1214/19-A0OP1404.

S. Albeverio et al., "Grassmannian Stochastic Analysis and the Stochastic Quantization of
Euclidean Fermions' (2020) arXiv:2004.09637

MG, H. Koch, and T. Oh, ‘Renormalization of the Two-Dimensional Stochastic Non-
linear Wave Equations', Transactions of the American Mathematical Society, 2018, 1,
https://doi.org/10.1090/tran/7452.

N. Barashkov and MG, "A Variational Method for <I>§ ', Duke Mathematical Journal 169, no.
17 (November 2020): 3339-3415, https://doi.org/10.1215/00127094-2020-0029.

N. Barashkov and MG, ‘The CD% Measure via Girsanov's Theorem', E.J.P 2021
(arXiv:2004.01513).

N. Barashkov's PhD thesis, University of Bonn, 2021.

N. Barashkov and MG. On the Variational Method for Euclidean Quantum Fields in Infinite
Volume (2021) arXiv:2112.05562

N. Barashkov, ‘A Stochastic Control Approach to Sine Gordon EQFT (2022)
arXiv:2203.06626



Part Il - the variational method for ®35 in infinite volume

[N. Barashkov, MG - On the variational method for Euclidean quantum fields in infinite volume - arXiv:2112.05562]



Boué-Dupuis formula

Theorem. Let (B;);»q be a Brownian motion on R", then for any bounded F:C(R ;
R") - R we have

log E[ef®)] =supE [F(B. +1(u),) — %fooo |us|2ds]

ueH,

with u: O x R, - R" adapted to B and with

I(u);:= f; uxds

%fooo lug’ds ~ H(Law(Bo+1(u),)|Law(B,)).

[M. Boué and P. Dupuis, A Variational Representation for Certain Functionals of Brownian Motion, Ann. Prob. 26(4), 1641-59]



Boué-Dupuis for the d =2 GFF

E[W:(x)Ws(y)]=(tAs)(m* =) (x~y), ts€[0,1]

The BD formula gives

1 el
— —F(¢) - —F(W1)7 _ - 22
logfe n(de)=—logE[e ]—ulégla]E[F(W1+Z1) + 2f0 llugllE ds]

where
Zo=(m2=0)"2 [ uds, = (m2-8)"2Z,
—log E[e~F(")] = inf E[F(W1+Z)) +&(Z.)]
o
with

1 1 : 1 1 : :
8(Za) =5 [ 10m?=8) 22 kds =5 [ (IVZJE+m2IZJR)ds



®; in a bounded domain A

fix a compact region A € R? and consider the ®; measure 0, on #'(RR?) with inter-
action in A and given by

e "MW p(dg)
fe D u(dg)’

with interaction potential V(¢):= qu>4—cfA<|)2. For any f: #'(R%) —» R (non neces-
sarily linear) let

Or(d) = ¢S (R?)

o= VA(f) ,:fe—f(q» Or(d)

we have the variational representation, Z=21, Ze = (Z;)te[o17:

Wh(f) = inf F/N(2.) - inf EON(Z,)
where

FIMNZ)=E[f(W+Z)+AVA(W+2Z) +E(Z.)].




renormalized potential

VAW+Z) = {W4—CW2+4[W3—%W] Z+6[W2—%] Zz+4WZ3+Z4}

4 N\ 4 N —
W W3 W2

take c = 12E[W?(x)] = +oo
VAW+2) = [ {4W?Z+6W22+4WZ3+ Z4}+ -
W"e € (A) =B (A)

here BZ%.(A) is an Holder-Besov space - a distribution f e .%'(T") belongs to
B%,(A) iff forany n>0

1Al < (27) 7N flls, ()

where A, f=F “1(¢,.(-)Ff) and @, is a function supported on an annulus of size ~2"
-we have f=5% (A f-ifa>0 B% .(T?) is a space of functions otherwise they are

only distributions



Euler-Lagrange equation for minimizers

Lemma. there exists a minimizer Z =7/ of F/*. Any minimizer satisfies the
Euler-Lagrange equations

E(4A[ 22K+ [ [ (Zi(m*—8) K.)ds)
- E(fAf’(W+Z)K+)\fA(W3+WZZ+12WZ2)K)

for any K adapted to the Brownian filtration and such that K€ L*(u, H).

> technically one really needs a relaxation to discuss minimizers, we ignore this all
along this talk. the actualy object of study is the law of the pair (W,Z) and not the
process Z. (similar as what happens in the ®3 paper)



apriori estimates

we use polynomial weights p(x) = (1+ ¢|x|) ™" for large n>0 and small ¢>0.

Theorem. There exists a constant C independent of |A| such that, for any minim-
izer Z of Ff’A<}/L) and any spatial weight p: A — [0,1] with |Vp|<ep for some ¢ >0
small enough, we have

E[4r[ pzi+ [ [ ((m*—n)2p"2Z)ds|<C.

Proof. test the Euler-Lagrange equations with K= pZ and then estimate the bad
terms with the good terms and objects only depending on W, e.g.

[, 0 W2Z| < Coll W3l pimy + B1Z1 R g1y,

[ oW?Z < Cillp"* W+ 8(lp"* Ziits+ lp 2 2l -+



tightness and bounds

WA(f) = ilef F/™Z) - ierfFOfA(Z) = FFN(ZA) — FOA(Z0A)
therefore

FFA(ZIAY — FONZIA) S WL () S EFA(Z0N) — FOA(Z0A)
and since, for any g,

FIA(Z8™) —FONZ8N) =E[f(W+Z8™) + N VAW + Z82) + € (Z8M) ]

—E[AVA(W+ZEM) + E(Z8M) ] =E[f(W + Z8M)]

E[f(W+Z'"™K WA SE[f(W+Z°Y)]

consequences: tightness of (0,)4 in '(R?) and optimal exponential bounds

sup | exp (3l Iy 0a(de) < o0
A



Euler-Lagrange equation in infinite volume

moreover

[ £()0a(d9) = E[F(X +2°M)]

the family (Z/*), is converging (provided we look at the relaxed problem) and any
limit point Z=Z/ satisfies a EL equation:

]EURZf’(W+Z)K+4)\fR2[[(W+Z)3]]K+f01 fRZZS(mz—A)KSds}:O

for any test process K (adapted to W and to Z).

a stochastic “elliptic” problem




‘ the stochastic equation

rewrite the EL equation as

E{fol [ (F W+ Z0) +4N[ (W1 + Z0)°] +Zo(m? ~ A) ) Kds} =0
then

E{fol [ B[/ (Wi+Z0) +4A[(Ws + Z0)°] + (2 = D)Z,

Fis] sts} =0
which implies that

(m* = N)Zs=—E| f' (Wi +Zy) +4A[(W1 + Z1)7]

]

open questions
» uniqueness??
» I'-convergence of the variational description of W, (f)?

not clear - we lack sufficient knowledge of the dependence on f of the solutions
to the EL equations above




exponential interaction

we can study similarly the model with
Vi(e)= [, &) [exp(Bo(x))dx

for B2 <87 and & R*— [0,1] a smooth spatial cutoff function

VEW+2) = [ E(x)exp(BZ(x))[exp(BW (x))]dx

Maa@

:fRz c(x)exp(BZ(x))MP(dx), [Gaussian multiplicative chaos]

BD formula

WESP(f) = —log [ exp(—f(¢))dv?
_ infIE[f(W+Z)+f{f,exp(f)Z)dMﬁ+%folf((mz—A)l/ZZt)zdt]

ZES,

> the function Z— V(W + Z) is convex!



variational description of the infinite volume limit

> thanks to convexity the EL equations have a unique limit Z in the co volume limit

> moreover we have the I'-convergence of the variational description:

Wil )= lim | —log | exp(—F())dv>=]

=lim [%%,(f) — Wz,(0)] =inf G/~=P(K)

with functional

G o (K) = E[f(w+z+1<) + f exp(BZ) (exp(PK) —1)dMP +5(1<)]

R
=0

which depends via Z on the infinite volume measure for the exp interaction.



the end

(no human has been harmed with TEX/IATEX to produce this presentation)



Part lll - the FBSDE for Grassmann measures




Euclidean Fermions

Fermions: quantum particles satisfying Fermi-Dirac statistics

EQFT: Wick rotation of QFT. t - t=it, R?x R - R%*! Euclidean space. Wightman
functions — Schwinger functions.

Y, ¥ -,

6= K. Osterwalder and R. Schrader. Euclidean Fermi fields and a Feynman-Kac formula for
Boson-Fermions models. Helvetica Physica Acta, 46:277-302, 1973.

Euclidean fermion fields ¢,{ form a Grassmann algebra

Putpp=—Pph  (Yi=0).




Schwinger functions

> Schwinger functions are given by a Berezin integral on A=GA (), ¥)

[y O, §)e”EY (O, p)eV (# D)
O, $)) = fdlpdlf)e_SE(q)ﬂL) B <e—V(tP,tP)>C -

] ] ) ) St i —5($,C)
e ) =2 CH+ V(9 D) O, fc=L LW P
fdll)dll)e 2(119, 119)

> Under (-)c the variables tP,tI) are “Gaussian” (Wicks' rule):

(WP(x1) P (x21))c= Z (=1 (xea))W (xe@)) e - (W (Xe20-1)) W (X 20-1)) ) C



algebraic probability

> a non-commutative probability space (4, w) is given by a C*-algebra 4 and a
state w, a linear normalized positive functional on A (i.e. w(aa*) >0).

> a random variable is an algebra homomorphism into A4

6% L. Accardi, A. Frigerio, and J. T. Lewis. Quantum stochastic processes. Kyoto Uni-

versity. Research Institute for Mathematical Sciences. Publications, 18(1):97-133, 1982.
10.2977/prims/1195184017

example. (classical) random variable X with values on a manifold /7
oS iR
fEL™(M;C) - X(f) e A=L"(,C), X(fg)=X(f)X(g), X(f*)=X()"

algebraic data: A =L*(();C), w(a) = [,a(w)P(dw), X € Hom,(L*(Ab), ).



Grassmann probability

> random variables with values in a Grassmann algebra A are algebra homomorph-
isms

G (V)=Hom(AV, A4)

The embedding of AV into 4 allows to use the topology of 4 to do analysis
on Grassmann algebras.

dev)(X,Y):=IX=Ylgw)y= sup IX(v)—=Y(v)l.4,

veV,vly=1

analogy. Gaussian processes in Hilbert space. Abstract Wiener space. "a con-
venient place where to hang our (analytic) hat on”.



back to QFT: IR & UV problems

QFT requires to consider the formula (Fermionic path integral)

<O(1Prq))€_v(¢'¢)>c
<e—V(¢,¢>>C

<O(1'P/1‘I)>>C,V:

with local interaction
Vi, p) = P(),H(x))dx
and singular covariance kernel (due to reflection positivity)

P P(y)) o< lx—yI™

this gives an ill-defined representation
» large scale (IR) problems
» small scale (UV) problems

well understood in the constructive QFT literature (Gawedzki, Kupiainen, Lesniewski,
Rivasseau, Seneor, Magnen, Feldman, Salmhofer, Mastropietro, Giuliani,...)



what about stochastic quantisation for Grassmann measures?

6% |gnatyuk/Malyshev/Sidoravicius | “Convergence of the Stochastic Quantization Method
I,L11”, 1993. [Grassmann variables + cluster expansion]

weak topology + solution of equations in law + infinite volume limit but no removal
of the UV cutoff

*

6% “Grassmannian stochastic analysis and the stochastic quantization of Euclidean Fermions”
| joint work with Sergio Albeverio, Luigi Borasi, Francesco C. De Vecchi. arXiv:2004.09637
(PTRF)

algebraic probability viewpoint + strong solutions via Picard interation + infinite
volume limit but no removal of the UV cutoff

6% “A stochastic analysis of subcritical Euclidean fermionic field theories” | joint work with
Francesco C. De Vecchi and Luca Fresta. arXiv:2210.15047

alg. prob. + forward-backward SDE + infinite volume limit & removal of IR cutoff
in the whole subcritical regime



Grassmann stochastic analysis

> filtration (%;);>0, conditional expectation w;: A — A,
w;(ABC)=Aw{(B)C, A,Ce A,
> Brownian motion (B;);>o with B;€ ¥ (V)
w(Bi(v)Bs(w)) =(v,Cw)(tAs), t,s=20,0,weV.

IB; — Bl S |t —s]*/2.
> Ito formula

t
¥, =Y, + fo B (¥)du+X, w(X,®X.)=Cirs

Wu(Fi(¥)) = wo(Fu(¥2) + [ @ [0Fu(¥) + EF,(¥,)]du,

1
$uFu ZEDZC'uFu K gl DFu)



the forward-backward SDE

[joint work with Francesco C. De Vecchi and Luca Fresta]

let ¥ be a solution of
d¥,=C, w,(DV(¥7))ds+dX,, s€[0,T], ¥=0.
where (X;); is Gaussian martingale with covariance w(X; ® X;) =C;,s. Then
w(e’ (e V) =1

and

w(0O(Xr)e"™) _ (O(p)e”W)c,

w(O(¥r)) = w(e XNy T (VW

for any O.

> this FBSDE provides a stochastic quantisation of the Grassmann Gibbs measure
along the interpolation (X;); of its Gaussian component



the backwards step

let F; be such that F=DV. By Ito formula

=F,(Y) + |

=F,(Y,) + |

Bs:= wy(DV (¥7)) = ws(Fr(¥r))

(3.Fu(%) + DA (%) + B C.DE(Y) )

'(auFucIfu) +%Déu1-“u(%> +(B., CuDFu(‘Pu»)

letting R;=B; — Fs(¥;) we have now the forwards-backwards system

¥, = [ C; (Fs(¥s) +Ry)ds + X,
Rt — ftT wt[Qu(\Pu) ]du + ftT wt[<Ru/ CuDFu(\Pu)”du

with

1 .
Qu = auFu + ED%uFu <= (84 S DIR )

du

du



solution theory

> standard interpolation for C., = (1 + Ari)"™%2, y<d/2. x€C™(R,), compactly
supported around 0:

Cri= (1+Ar)"™ 2 (27%(=ARe)),  IClew~r S22 % ICl 2w, S 2%

> the system
¥, = [ C; (Fs(¥s) +Ry)ds + X,
Rt — ftT wt[Qu(Wu) ]du + ftT wt[<Ru/ CuDFu(Wu)”du

can be solved by standard fixpoint methods for small interaction, uniformly in the
volume since X stays bounded as long as T < oco:

Xl (rey S 27

> decay of correlations can be proved by coupling different solutions (Funaki '96).

> limit T — oo requires renormalization when y&[0,d/2].



relation with the continuous RG

if we take F such that Q=0 we have R=0 and then

Y, = jot C., (F.(¥.))ds + X,
with

9uF, + %DZC-MFu +(F,,C,DF,)=0, Fr=DV.

define the effective potential V; by the solution of the HJB equation

1 .
9.Vyu+5D¢ Vu+(DV,,C,DV,)=0,  Vr=V.

then F; =DV, and the FBSDE computes the solution of the RG flow equation along
the interacting field.

> so far a full control of the Fermionic HJB equation has not been achieved (work
by Brydges, Disertori, Rivasseau, Salmhofer,...). Fermionic RG methods rely on a
discrete version of the RG iteration.



approximate flow equation

thanks for the FBSDE we are not bound to solve exactly the flow equation and we
can proceed to approximate it.

> linear approximation. take

1
9,Fy+5DeF,=0, Fr=DV.

this corresponds to Wick renormalization of the potential V:

¥, = [ Cs (Fs(¥s) +Ro)ds + X,
Ri= J wi[(Fu(¥.), CuFu(¥))]du + [ wi[(R,, C,DF,(¥,))]du

t

the key difficulty is to show uniform estimates for
T :
ft wt[<Fu<lYu)/ CuFu(Wu)”du

as T — co. we cannot expect better than ||¥|| = ||X;|| = 2"



polynomial truncation

a better approximation is to truncate the equation to a (large) finite polynomial
degree

1 .
9,F, +5Dé Fy+ I<x(Fy, C,DF,) =0

where I1¢x denotes projection on Grassmann polynomials of degree <K and take

Fi(p) =Y FOpek

k<K
With this approximation one can solve the flow equation and get estimates

2 (a=pk)t
(k+1)%

IF®| < >0,

with x =3B, p=d/2—-y, provided the initial condition F=DV is appropriately renor-
malized.



‘ FBSDE in the full subcritical regime

with the truncation I'Tx we have

¥, = [ C; (Fs(¥s) +Ry)ds + X,
Rt — ftT wt[H>K<FMI CuDFu><‘Pu)]du + fT wt[<Ru/ CuDFu(\Pu) >]du

t
but now observe that

[Pl = 1 X S 27 ||Ft(k)\lft®k|| < 2 (k=B(k=3))t

which is exponentially small for k large as long as v <d/4 (full subcrititcal regime).

now the term

LT [ TTok(Fo, CuDF,) (¥,) du

can be controlled uniformly as T — oo and also the full FBSDE system. (!)



thanks

(no human has been harmed with TEX/IATEX to produce this presentation)



