[main] [teaching]mg|pages

Stochastic Analysis

A course developing applications of stochastic calculus to the study of continuous time stochastic processes. Course delivered in Bonn in the Summer Semester 2017.

V4F1 - Summer semester 2017

Thursday 16.15-18.00 and Thursday 12.15-14.00, Kleiner Hrsaal, Wegelerstr. 10 

Exercise sheets: Immanuel Zachhuber

Tutorial classes: Claudio Bellani / Monday 16-18, SemR 1.007

Exam: 1-3 August 2017 and 26-28 September 2017

 Topics

Prerequisites 

Ito calculus for Brownian motion, see  e.g. Prof. Eberle's lecture notes on “Introduction to Stochastic Analysis” (pdf).

Lecture Notes

The first part of the course will be based on Prof. Eberle's lecture notes for Stochastic Analysis SS16 (pdf), in particular Chapters 2,3 but excluding processes with jumps. Some notes for material not covered by Prof. Eberle's lecture notes will be posted here:

Note 1 : Stochastic differential equations : existence, uniqueness and martingale problems. (pdf) [version 1.1, posted 24/5/2016]

Note 2 : Girsanov transform, Doob's h-transform. (pdf) [version 1.1, posted 24/5/2016]

Note 3 : Brownian martingale representation theorem, Entropy and Girsanov transform, Boué-Dupuis formula, Large deviations. (pdf) [version 1.3, posted 16/6/2016]

Note 4 : Kolmogorov theorem, Stochastic flows, Backward Ito formula. (pdf) [version 1.1, posted 29/6/2016]

Further References

Problem sheets

Course Journal